

Ing. Giorgio Gianarro Studio di Ingegneria

C.so G. Ferraris, 2 - 10121 TORINO Tel.: 011/18733969-347/2204653 E-mail: gianarrogiorgio@gmail.com

COMMITTENTE:

COMUNE DI VOLPIANO

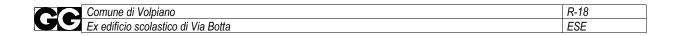
INDIRIZZO COMMITTENTE:

P.zza Vittorio Em II,12 - 10088 Volpiano (TO)

UBICAZIONE INTERVENTO:

Via Roma ang. Via Botta - Volpiano (TO)

PIANO NAZIONALE DI RIPRESA E RESILIENZA (PNRR)- MISSIONE 5 COMPONENTE 2 INVESTIMENTO/SUB INVESTIMENTO 2.1 " RIGENERAZIONE URBANA"


PROGETTO DI RISTRUTTURAZIONE IMMOBILE EX EDIFICIO SCOLASTICO DI VIA CARLO BOTTA

OGGETTO:

RELAZIONE DI CALCOLO DELLE STRUTTURE e RELAZIONE MATERIALI

ELABOR	ELABORATO:				FASE:				
	D10			•	PROGET	TO ES	ECUTIVO		
	R18			0			LIOTECA\0 PROGETTO ESECUTIVI.DOC		
4	9/05/2023	7° EDIZ	ZIONE			G.Gallo.	Ing. Giorgio Gianarro		
3	9/05/2023	6° EDIZ	ZIONE			G.Gallo.	Ing. Giorgio Gianarro		
2	5/05/2023	5° EDIZ	ZIONE			G.Gallo.	Ing. Giorgio Gianarro		
1	15/04/2023	4° EDIZ	ZIONE			G.Gallo.	Ing. Giorgio Gianarro		
0	02/12/2022	3° EDIZ	ZIONE			G.Gallo	Ing. Giorgio Gianarro		
REV.	DATA	DESCF	RIZIONE			EDITATO	CONTROLLATO		

INDICE

1.	RELAZIONE DI CALCOLO DELLE STRUTTURE	1
2.	RELAZIONE SUI MATERIALI	36

1. RELAZIONE DI CALCOLO DELLE STRUTTURE

DESCRIZIONE DELL'EDIFICIO:

L'edificio in oggetto presenta una struttura portante in muratura di mattoni pieni a 2 piani fuori terra. Oggetto dell'intervento è il rinforzo dei solai esistenti al fine di renderli adeguati staticamente ai sovraccarichi previsti a progetto; a tali fine si prevede una serie di rinforzi estradossali con getti in calcestruzzo armato alleggerito e solidarizzato con staffature alle travi in acciaio esistenti. Inoltre si prevede la sostituzione del tetto con una nuova struttura in legno lamellare e l'allargamento dell'impronta a terra delle fondazioni. I solai, come anticipato, sono in carpenteria metallica a supporto di voltini in muratura mentre ad oggi il tetto è in legno massiccio. L'intervento quindi è individuabile quale "intervento locale" ai sensi del cap. 8.4.1 delle NTC 2018 in quanto gli interventi riguardano singoli elementi (in particolare solai e tetto) della struttura che non cambino significativamente il comportamento della struttura ma che migliora le caratteristiche di resistenza di elementi anche non danneggiati.

Analizzato l'edificio e considerate le informazioni reperite, come anche previsto dalla Normativa vigente al fine di poter ai calcoli ed alla quantificazione dei tassi di lavoro sui materiali si prevede di raggiungere un livello di conoscenza LC1: Conoscenza limitata ovvero secondo la seguente tabella:

Tabella C8.5.IV – Livelli di conoscenza in funzione dell'informazione disponibile e conseguenti metodi di analisi ammessi e valori dei fattori di confidenza, per edifici in calcestruzzo armato o in acciaio

 Livello di conoscenza	Geometrie (carpenterie)	Dettagli strutturali	Proprietà dei materiali	Metodi di analisi	FC (*)
LC1		Progetto simulato in accordo alle norme dell'epoca e indagini limitate in situ	Valori usuali per la pratica costruttiva dell'epoca e <i>prove limitate</i> in situ	Analisi lineare statica o dinamica	1,35
LC2	Da disegni di carpenteria originali con rilievo visivo a campione; in alternativa rilievo	Elaborati progettuali incompleti con <i>indagini</i> <i>limitate</i> in situ; in alternativa <i>indagini estese</i> in situ	Dalle specifiche originali di progetto o dai certificati di prova originali, con prove limitate in situ; in alternativa da prove estese in situ	Tutti	1,20
LC3	completo ex-novo	Elaborati progettuali completi con <i>indagini</i> <i>limitate</i> in situ; in alternativa <i>indagini</i> <i>esaustive</i> in situ	Dai certificati di prova originali o dalle specifiche originali di progetto, con prove estese in situ; in alternativa da prove esaustive in situ	Tutti	1,00

Si è quindi proceduto ad un rilievo degli elementi resistenti dei solai al fine di poter dimensionare i rinforzi.

STRUTTURA PORTANTE:

- Struttura portante verticale realizzata in muratura di mattoni pieni esistente, di spessore di circa 50-55cm.
- Fondazione della muratura portante costituita da cordoli in calcestruzzo armato di larghezza complessiva 40
 cm, di cui 10 cm incassati nella muratura.
- Struttura orizzontale dei solai costituita da voltini in muratura poggianti su profili serie IPN esistenti,
 rinforzati mediante rinforzati mediante getto di calcestruzzo alleggerito armato con rete metallica e
 solidarizzato alle travi in acciaio mediante opportune staffe.
- Struttura portante del tetto realizzata con travi in legno lamellare

MATERIALI DI NUOVA REALIZZAZIONE PREVISTI NELL'INTERVENTO

- Acciaio per c.a. tipo **B450C** (FeB44k) controllato in stabilimento con $f_{yk} = 450 \text{ N/mm}^2$
- Conglomerato a prestazione :

Solai: Calcestruzzo alleggerito tipo LC 25/28 avente $R_{ck} \ge 28 \text{ N/mm}^2 \text{ con } f_{ck} = 25 \text{ N/mm}^2$

Struttura di fondazione: $R_{ck} \ge 30 \text{ N/mm}^2 \text{ con } f_{ck} = 24.9 \text{ N/mm}^2$

• Legno per struttura portante del tetto: Legno lamellare GL 24

ANALISI DEI CARICHI

Si considerano i seguenti carichi permanenti ed accidentali, oltre ai pesi propri degli elementi strutturali:

• Peso proprio muratura:

(G) Muratura in mattoni pieni

 9.00 kN/m^2

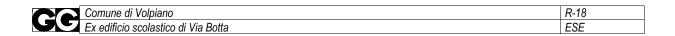
CARICHI ACCIDENTALI (comuni a tutte le tipologie di solaio):

• Carichi solai:

(Q) Variabile solai di piano primo (categoria C2 - DM 17/01/2018)

 4.00 kN/m^2

Si precisa che la struttura in oggetto <u>ha una capienza inferiore alle 100 persone</u>. Non rientra quindi negli "edifici ed opere infrastrutturali rilevanti" di cui al punto 2.1 "edifici" dell'allegato 1 della D.G.R. n. 65-7656 del 21/5/2014.


(Q) Variabile solai di piano terreno (categoria C3 - DM 17/01/2018)

 5.00 kN/m^2

(Q) Variabile sottotetto (categoria H - DM 17/01/2018),

minimo 0.50 kN/mq, nei calcoli si utilizza:

 1.00 kN/m^2

CARICHI PERMANENTI: Solai con travi metalliche e voltini in muratura

(G2) Pesi permanentemente portati:

Tramezzature realizzata con elementi divisori

aventi un peso compreso tra 1.00 kN/m = 2.00 kN/m 0.80 kN/m^2

(G2) Permanente su solaio a voltini e putrelle:

mattone s= 5cm 0.90 kN/m^2

riempimento alleggerito $sp_{medio} = 6cm$ 1.00 kN/m²

Sottofondo e pavimento = 1.10 kN/m^2

(G) Totale permanente su solaio 3.80 kN/m²

N.B: Il peso proprio della trave metallica e della soletta in c.a. estradossale è già ricompreso tra i carichi calcolati in modo automatico nella verifica, in particolare il calcestruzzo è alleggerito con peso specifico pari a 18 kN/mc.

CARICHI PERMANENTI: Volte in muratura

(G1) Peso proprio volta in muratura: mattone s= 5cm 0.90 kN/m^2

Calotta in c.a. con cls alleggerito: 1.10 kN/m²

(G1) Totale peso proprio volta rinforzata 2.00 kN/m²

(G2) Pesi permanentemente portati:

Tramezzature realizzata con elementi divisori

aventi un peso compreso tra 1.00 kN/m = 2.00 kN/m 0.80 kN/m^2

(G2) Permanente su calotta in c.a.:

riempimento alleggerito $sp_{medio} = 25cm$ 1.90 kN/m²

Sottofondo e pavimento = 1.10 kN/m^2

(G2) Totale permanente su volta 3.80 kN/m²

Il riempimento in alleggerito per rinfiancare la volta viene realizzato con argilla espansa impastata tipo "LECA IMPASTATO – BETONCINI UNIGRANULARI", usati quando è richiesta una resistenza meccanica abbinata a caratteristiche di leggerezza ed isolamento termico (strati isolanti di sottofondi, riempimenti leggeri e simili). La formulazione classica per 1 m³ pari a: (20 sacchi) di Leca nella granulometria desiderata; 150 kg di cemento tipo 32,5

; circa 80÷90 litri di acqua pulita con poco calcestruzzo per mantenere i vuoti interni. Il peso specifico del materiale è pari a circa 7.50 kN/m³

CARICHI COPERTURA:

(G2) Pesi permanentemente portati:

 1.00 kN/m^2 Coppi

 0.50 kN/m^2 Listellatura ed isolante

> 1.50 kN/m^2 **Totale**

Carico variabile neve (Volpiano):

CARICO NEVE lavoro: VOLPIA Unità di misura: m; KN/mq; KN/m

Zona 0

Altitudine [m]: 219

Periodo di Ritorno [anni]: 50

qsk (carico neve al suolo) = 1.5158

COPERTURA A DUE FALDE

alfa1 (inclinazione della falda1 [°]) = 27 alfa2 (inclinazione della falda2 [°]) = 27

mu | qs | qe | mu1(alfa1)| .8 | 1.2126| .594| 0.5mu1(alfa1)| .4 | .6063| .074| mu1(alfa2)| .8 | 1.2126| .594| 0.5mu1(alfa2)| .4 | .6063| .074|


(Q) Carico neve assunto nei calcoli:

 1.60 kN/m^2

Caratterizzazione dell'azione sismica di progetto:

La verifica va fatta anche considerando che l'edificio, per tipologia d'uso e probabilità di affollamento, è da considerarsi in classe d'uso II in quanto come già anticipato la struttura in oggetto ha una capienza inferiore alle 100 persone. Non rientra quindi negli "edifici ed opere infrastrutturali rilevanti" di cui al punto 2.1 "edifici" dell'allegato 1 della D.G.R. n. 65-7656 del 21/5/2014 ovvero quale costruzione che non preveda affollamenti significativi come previsto al par. 2.4.2 delle N.T.C.

Come previsto dai par. 2.4.2 - 2.4.3 del D.M., l'azione sismica è valutata in relazione ad un periodo di riferimento VR che si ricava dal prodotto della vita nominale VN dell'opera e il coefficiente d'uso CU. La vita nominale dell'opera oggetto di studio è di 50 anni. Il coefficiente d'uso è scelto in base alla classe d'uso della costruzione. Nel

caso il oggetto, la costruzione rientra nella classe d'uso II, il cui coefficiente d'uso CU è pari a 1. La costruzione, si trova nel comune di Volpiano, il quale ricade nella zona di classificazione sismica 3 a seguito della classificazione indicata in D.G.R. 30/12/2019 n. 6-887.

Per quanto riguarda la classificazione sismica del terreno è stata prodotta la relazione geologica, a firma del Dott.

Maurizio Canepa, nella quale attraverso la metodologia MASW è stata individuata una categoria del suolo B.

METODO DI CALCOLO E VERIFICA:

La presente relazione è stata compilata seguendo il metodo agli **STATI LIMITE** conformemente alla sottoelencata normativa:

Legge n. 1086 - 5 Novembre 1971

"Norme per la disciplina delle opere in conglomerato cementizio armato, normale e precompresso ed a struttura metallica".

Ordinanza del Presidente del Consiglio dei Ministri n. 3274 del 20 Marzo 2003 e s.m.i.

"Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica" e successive modifiche ed integrazioni.

D.M. 17 Gennaio 2018

"Aggiornamento delle Normative tecniche per le costruzioni"

Circolare n. 7 C.S.LL.PP. "Istruzioni per l'applicazione dell'aggiornamento delle "Norme tecniche per le costruzioni" di cui al D.M. 17 Gennaio 2018"

DATI di CALCOLO

Calcestruzzo solai LC 25/28

Resistenza caratteristica: Rck 28 N/mm²:

 f_{ck} = 25 N/mm²

 γ_{cls} = fattore sicurezza = 1.5

α_{cc}=0.85 (coefficiente riduttivo per carichi di lungo termine)

 $f_{cd} = 14.16 \text{ N/mm}^2$

Calcestruzzo fondazioni:

Classe di esposizione XC2

Resistenza caratteristica: Rck 30 N/mm²:

 $f_{ck} = 24.9 \text{ N/mm}^2$

 γ_{cls} = fattore sicurezza = 1.5

α_{cc}=0.85 (coefficiente riduttivo per carichi di lungo termine)

 $f_{cd} = 14.1 \text{ N/mm}^2$

Acciaio da cemento armato:

Tipo B 450 C

 $f_{yk} = 450 \text{ N/mm}^2$

 γ_{acc} = fattore sicurezza = 1.15

 $f_{yd} = 391 \text{ N/mm}^2$

Legno lamellare:

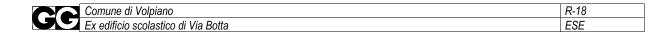
Tipo GL 24

 $f_{m,k} = 24 \text{ N/mmq}$ (res. a flessione)

 $f_{t,0,k} = 16.5$ (res. a trazione)

 $f_{c,0,k} = 24$ (res. a compressione)

 $f_{v,k} = 2.7$ (res. a taglio)


 $\gamma_{\,lamellare} = fattore \,\, sicurezza = 1.45$

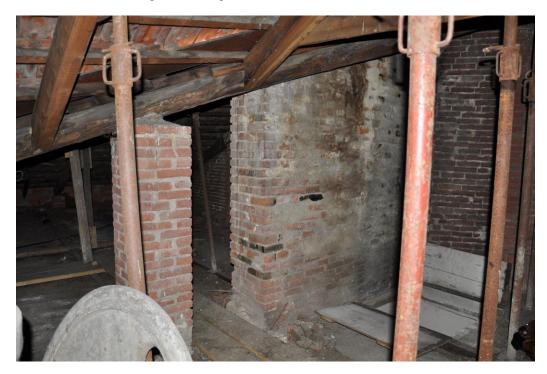
Acciaio da carpenteria dei profili esistenti:

In base alla Circolare n. 7 C.S.LL.PP. "Istruzioni per l'applicazione dell'aggiornamento delle "Norme tecniche per le costruzioni" di cui al D.M. 17 Gennaio 2018" (Tab. C8.5.IV), il livello di conoscenza per la resistenza meccanica dei profili in acciaio esistente che reggono le volte dei solai corrisponde a:

LIVELLO DI CONOSCENZA LC1 (riferimento a norme dell'epoca, limitate verifiche in sito). In tale condizione il fattore di confidenza risulta: **F.C.=1.35**

La resistenza media a rottura per gli acciai dell'epoca (primi del '900) è stata stimata in base alle indicazioni del Regio Decreto 10/10/1907 "Norme e condizioni per i materiali agglomerati idraulici e per le opere in cemento armato", nonché sulla base della pubblicazione: secondo cui essa è almeno pari a 360 N/mm².

Assumendo la resistenza caratteristica pari a circa il 75% della resistenza media, essa risulta pari a circa 260 N/mm². A tale valore si applica il fattore di confidenza FC=1.35, ottenendo:


 $f_{yk,esist}$ =260/1.35= 192 N/mm²

Da cui, applicando il fattore di sicurezza γ_s = 1.05, si ottiene:

 $f_{vd,esist}$ =192/1.05= 182 N/mm²

Muratura di mattoni pieni per pilastri del sottotetto:

A supporto delle travi del tetto sono presenti pilastri e setti murari, nel sottotetto, realizzati con muratura di mattoni pieni e malta di calce come nella seguente immagine. La dimensione minima è 50x50xcm:

In base alla Circolare n. 7 C.S.LL.PP. "Istruzioni per l'applicazione dell'aggiornamento delle "Norme tecniche per le costruzioni" di cui al D.M. 17 Gennaio 2018" cap. C8.5.4, il livello di conoscenza per la resistenza meccanica della muratura di mattoni pieni e malta di calce corrisponde a:

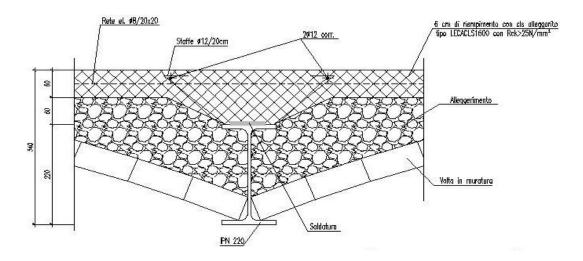
LIVELLO DI CONOSCENZA LC1. In tale condizione il fattore di confidenza risulta: F.C.=1.35

La resistenza media a rottura e gli altri parametri vengono dedotti dalla seguente tabella utilizzando i valori minimi per le resistente e medi per i moduli di deformabilità.

Tipologia di muratura	f (N/mm²) min-max	τ ₀ (N/mm²) min-max	f _{V0} (N/mm²)	E (N/mm²) min-max	G (N/mm²) min-max	w (kN/m³)
Mark the state of	min-max	IIIII-IIIax		IIIII-IIIax	IIIII-IIIax	
Muratura in pietrame disordinata (ciottoli, pietre erratiche e irregolari)	1,0-2,0	0,018-0,032	-	690-1050	230-350	19
Muratura a conci sbozzati, con paramenti di spessore disomogeneo (*)	2,0	0,035-0,051	-	1020-1440	340-480	20
Muratura in pietre a spacco con buona tessitura	2,6-3,8	0,056-0,074	-	1500-1980	500-660	21
Muratura irregolare di pietra tenera (tufo, calcarenite, ecc.,)	1,4-2,2	0,028-0,042	-	900-1260	300-420	13 ÷ 16(**)
Muratura a conci regolari di pietra tenera (tufo, calcarenite, ecc.,) (**)	2,0-3,2	0,04-0,08	0,10-0,19	1200-1620	400-500	13 . 10()
Muratura a blocchi lapidei squadrati	5,8-8,2	0,09-0,12	0,18-0,28	2400-3300	800-1100	22
Muratura in mattoni pieni e malta di calce (***)	2,6-4,3	0,05-0,13	0,13-0,27	1200-1800	400-600	18
Muratura in mattoni semipieni con malta cemenuzia (es,: doppio UNI foratura ≤40%)	5,0-8,0	0,08-0,17	0,20-0,36	3500-5600	875-1400	15

Da cui si evince, per l'utilità della presente relazione e considerando FC=1.35 oltre che $\gamma_M = 3$:

 $f_{d,muratura}=2.6/(1.35*3)=0.64 \text{ N/mm}^2$


<u>VERIFICA DEI SOLAI DI PIANO TERRA E PIANO PRIMO</u>

I solai di interpiano e sottotetto sono realizzati in travi in acciaio ad I tipo INP 200, 220, 160 ad interasse di circa 100cm a supporto di voltini in muratura; l'estradosso è stato riempito con materiali leggeri poco addensati su cui è posato il pavimento esistente. L'intervento in oggetto prevede il rinforzo delle volte mediante getto in calcestruzzo alleggerito (LC 25/28) con rete elettrosaldata saldata e staffe saldate al profilo in acciaio (volta tipo B), con rete elettrosaldata saldata rialzata e staffe saldate al profilo in acciaio (per la volta tipo A) ed infine con rete elettrosaldata e chiodature infisse con resine epossidiche all'estradosso della volta in muratura (volta tipo C).

Si precisa che in fase di getto è prevista la puntellazione del solaio in modo da non lasciare nel profilo metallico delle tensioni dovute al sostegno del getto ovvero eliminare i tassi di lavoro strutturale in sezione non collaborante.

Di seguito si riportano le verifiche sulla sezioni miste acciaio-calcestruzzo che si ottengono dopo il rinforzo nelle volte, considerando i relativi profili IPN esistenti con resistenza di calcolo fyd,esist=182 N/mm2, come spiegato nella Relazione illustrativa dei materiali. Viene verificata la resistenza della sezione e la capacità di trasmissione degli sforzi di taglio mediante i connettori a staffa.

A titolo esemplificativo, si riporta il particolare di un rinforzo di volta mediante getto di calcestruzzo, così da costituire una sezione resistente in acciaio con soletta collaborante in calcestruzzo.

Si riporta la verifica del solaio tipo A del primo piano che utilizzabile quale cat. C2:

VF	RIFICA RINFORZO TRAV	/I IPN 2	20 VOLTA	Δ					
•-	Codice sezione 1221 SI	EZIONE:	IPN 220	NORM		Coefficienti di sicurezza lato m	ateriali	i:	
	altezza trave (h)			mm	1	ACCIAIO CARPENTERIA			
	larghezza ali (b)		110	mm		γ M0 = Resistenza =		1.05	
	Spessore anima (tw)		5.9	mm		γM1= Instabilità=		1.05	
	Spessore ala (tf)	1	9.2	mm		γ M1 = Instabilità ponti =		1.10	
	Raggio di raccordo (r)		12	mm		γ M2 = Resistenza sez. tese		1.25	
	Area (A)		3340	mm^2		CALCESTRUZZO			
	Area taglio (A v)		1591	mm^2		γ M0 = Resistenza =		1.50	
	Peso proprio (pp)		262	N/m		ACCIAIO CONNETTORI (da c.a	.)		
	Momento d'Inerzia princ. X (I y)		27720000	mm^4		γ M0 = Resistenza =		1.15	
	Modulo di resistenza Y (Wy) Elastico	:0	252000	mm^3					
	Modulo di resistenza pr. Y (Wy,pl) Pl	lastico	285000	mm^3		Tipo di acciaio carpenteria: ESI	STENT	ΓΕ LC1 (f.c	.=1.35)
	raggio d'inerzia maggiore (i y)		91.1	mm		Tensione di snervamento car.	fyk=	194	N/mmq
2	Momento d'Inerzia princ. Y(I z)		2050000	mm^4		Tensione di snerv. di calcolo	fyd=	184.76	N/mmg
Ÿ	Modulo di resistenza Z (Wz) Elastico	:0	37300	mm^3		Modulo elastico normale (Ea) =		206000	Nłmmq
8	Modulo di resistenza pr. Z(Wz) Plasi	tico	58100	mm^3		Modulo elastico tangenziale (Ga) =		80000	Nłmmq
¥	raggio d'inerzia minore (i z)		24.8	mm	E	Coeff. Dilatazione termica		0.000012	1/°C
1	Momento d'inerzia torsionale (1 t)		90300	mm^4	Z	Tipo di calcestruzzo:	Rck	28	LC 25/28
S	Calcestruzzo				ZI.	Res. cilindrica caratt. fck		23.24	Nłmmq
δ.	Spessore soletta (hc)		6	cm	I≓I	Coefficiente lungo term. acc		0.85	
Ž	Altezza di raccordo soletta-profilo ((hr)	6	cm		Res. cilindrica di calcolo fod		13.17	N/mmq
GEOMETRIA SEZIONE COMPOSTA ACC-CLS	Larghezza media raccordo soletta-p	profilo (br)	20	cm	MATERIALI UTILIZZATI	Modulo elasticità Ec		30962	N/mmq
	Interasse travi acciaio		100	cm	i	Peso di volume calcestruzzo ycls		18	N/mm ² 3
2	Largh eff. soletta (b eff)		100	cm	▣	Tipo di acciaio connettori:	В	450	С
믔	Elementi Connettori: S'	TAFFE			121	Tensione di snervamento car.	fyk=	450	N/mmq
ŭ	Diametro staffa		12	mm	Σ	Tensione di snerv. di calcolo	fyd=	391.3	N/mmg
9	Angolo staffa-piattabanda α		90	gradi	г				
. ₩	Passo longitudinale staffe			cm		Tensioni di SLU indotte nell'acc	iaio in	fase di ge	tto
E		unghezza		m	1	Carico SLU fase costrutt. (soletta non			KN/m
罿	Presenza di piatti saldati alle ali		NO		121	M Ed fase costrutt. (soletta non collab			kNm
	base			mm	ΙĘΙ	Tensioni intradosso sez. acciaio (σa.i)			N/mm^2
8	spessore			mm	ĕ	Tensioni estradosso sez. acciaio (σα,i)			N/mm^3
	Omogenizzazione rispetto all	l'acciaio			COSTRUTTIVA	Verifica flessione SLU sezione			141111111111111111111111111111111111111
Ni.	Per carichi di breve termine (iz 1·		8	Momento resistente elastico acciaio N		46.6	kNm
ij	Coeff. di omogenizzazione (n=Es/Ec		6.7		띘	M Rd / M Ed =	-11 10	40.0	KIMIII
111	Area omogenizzata (Aom)	۰,		mm^2		Yerifica SLU taglio appoggio SX	_		
				1111111 2					
Ž				mm^3	5	V Ed annoggio fase costruttiva	•	0.0	kNm
ZIONE	Momento statico omog. (Som)		3163043	mm^3 mm	SLU FASE	V Ed appoggio fase costruttiva	•	0.0 169.7	kNm kNm
AZIONE	Momento statico omog. (Som) Altezza baric. sez. om. x₄	Jom)	3163043	mm		V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed / V.c Rd =		169.7	kNm
ZZAZIONE	Momento statico omog. (Som)	Jom) (Ec=50%E	3163043 256 127917946.7	mm		V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed / V,c Rd = Verifica SLU taglio appoggio D:		169.7	
NIZZAZIONE	Momento statico omog. (Som) Altezza baric. sez. om. 8; Momento d'inerza omogenizzato (J Per carichi di lungo termine (Coeff. di omogenizzazione (n=Es/Ec	(Ec=50%E	3163043 256 127917946.7 E c.iniz.): 13	mm mm^4 -		V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica SLU taglio appoggio DV V Ed appoggio fase costruttiva		169.7 V Ed	kNm
GENIZZAZIONE	Momento statico omog. (Som) Altezza bario. sez. om. % Momento d'inerza omogenizzato (J Per carichi di lungo termine (Coeff. di omogenizzazione (n=Es/Ec Area omogenizzata (Aom)	(Ec=50%E	3163043 256 127917946.7 Ec,iniz.): 13 7849.101618	mm mm^4 - mm^2		V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed / V,c Rd = Verifica SLU taglio appoggio D/ V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd		169.7 V Ed 0 169.7	kNm < 50% V c,Rd
10GENIZZAZIONE	Momento statico omog. (Som) Altezza bario, sez, om. % Momento d'inerza omogenizzato (J Per carichi di lungo termine (Coeff, di omogenizzazione (n=Es/Eo Area omogenizzata (Aom) Momento statico omog. (Som)	(Ec=50%E	3163043 256 127917946.7 Ec.iniz.): 13 7849.101618 1765222	mm mm^4 mm^2 mm^3	VERIFICHE SLU P	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V, c Rd = Verifica SLU taglio appoggio D V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V, c Rd =		169.7 V Ed 0 169.7 V Ed	kNm
OMOGENIZZAZIONE	Momento statico omog. (Som) Altezza bario. sez. om. % Momento d'inerza omogenizzato (J Per carichi di lungo termine (Coeff. di omogenizzazione (n=Es/Ec Area omogenizzata (Aom) Momento statico omog. (Som) Altezza bario. sez. om. %	(Ec=50×E c)	3163043 256 127917946.7 Ec,iniz.): 13 7849.101618 1765222 225	mm mm^4 mm^2 mm^3 mm		V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc.Rd V Ed I V. e.Rd = Verifica SLU taglio appoggio Di V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc.Rd V Ed I V. e.Rd = Verifica flessione SLU sezione	₹ mezzei	169.7 V Ed 0 169.7 V Ed	kNm < 50% V c,Rd < 50% V c,Rd
OMOGENIZZAZIONE SEZ	Momento statico omog. (Som) Altezza bario, sez, om. % Momento d'inerza omogenizzato (J Per carichi di lungo termine (Coeff, di omogenizzazione (n=Es/Eo Area omogenizzata (Aom) Momento statico omog. (Som)	(Ec=50×E c)	3163043 256 127917946.7 Ec.iniz.): 13 7849.101618 1765222	mm mm^4 mm^2 mm^3 mm	VERIFICHE	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc.Rd V Ed I V.c Rd = Verifica SLU taglio appoggio D: V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc.Rd V Ed I V.c Rd = Verifica flessione SLU sezione (Metodo elastico secondo DM)	K mezzei 17-01-11	169.7 V Ed 0 169.7 V Ed ria 8 \$4.3.4.2.1	kNm < 50% V c,Rd < 50% V c,Rd
OMOGENIZZAZIONE	Momento statico omog. (Som) Altezza baric. sez. om. x _c Momento d'inerza omogenizzato (J Per carichi di lungo termine (Coeff. di omogenizzazione (n=Es/Ec Area omogenizzata (Aom) Momento statico omog. (Som) Altezza baric. sez. om. x _c Momento d'inerza omogenizzato (J	(Ec=50×E c)	3163043 256 127917946.7 Ec,iniz.): 13 7849.101618 1765222 225 105822402.7	mm mm^4mm^2 .mm^3 .mm mm^4	VERIFICHE	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica SLU taglio appoggio D V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica flessione SLU sezione (Metodo elastico secondo DM Incremento di carico risp. a fase costru	K mezzei 17-01-11	169.7 V Ed 0 169.7 V Ed ria 8 \$4.3.4.2.1 13.44	kNm < 50% V c,Rd < 50% V c,Rd .1) KN/m
OMOGENIZZAZIONE	Momento statico omog. (Som) Altezza baric. sez. om. 8¢ Momento d'inerza omogenizzato (J Per carichi di lungo termine (Coeff. di omogenizzazione (n=Es/Ec Area omogenizzata (Aom) Momento statico omog. (Som) Altezza baric. sez. om. 8¢ Momento d'inerza omogenizzato (J Carichi	(Ec=50%E c) Jom)	3163043 256 127917946.7 Ec,iniz.): 13 7849.101618 1765222 225 105822402.7	mm mm^4 . mm^2 mm^3 mm mm^4 Coeff •	VERIFICHE	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,C Rd = Verifica SLU taglio appoggio D V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,C Rd = Verifica flessione SLU sezione (Metodo elastico secondo DM Incremento di carico risp. a fase costru Incremento di momento Δ M Ed	K mezzei 17-01-11	169.7 V Ed 0 169.7 V Ed ria 8 \$4.3.4.2.1 13.44 82	kNm < 50% V c,Rd < 50% V c,Rd < 50% V c,Rd KN/m kN/m
OMOGENIZZAZIONE	Momento statico omog. (Som) Altezza bario. sez. om. % Momento d'inerza omogenizzato (J Per carichi di lungo termine (Coeff. di omogenizzatione (n=Es/Ec Area omogenizzata (Aom) Momento statico omog. (Som) Altezza bario. sez. om. % Momento d'inerza omogenizzato (J Carichi interasse 1.00 m	(Ec=50%E c) Jom)	3163043 256 127917946.7 Ec,iniz.): 13 7849.101618 1765222 225 105822402.7 Coeff γ di SLU	mm mm^4mm^2 mm^3 mm mm^4	VERIFICHE	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,C Rd = Verifica SLU taglio appoggio D V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,C Rd = Verifica flessione SLU sezione (Metodo elastico secondo DM Incremento di carico risp. a fase costru Incremento di momento Δ M Ed Tensioni estradosso sez. cls (σc)	Mezzei 1 7-01-1 9 utt∆q	169.7 V Ed 0 169.7 V Ed ria B \$4.3.4.2.1 13.44 82 -6.7	kNm < 50% V c,Rd < 50% V c,Rd .1) KN/m
OMOGENIZZAZIONE	Momento statico omog. (Som) Altezza bario. sez. om. % Momento d'inerza omogenizzato (J Per carichi di lungo termine (Coeff. di omogenizzazione (n=Es/Ec Area omogenizzata (Aom) Momento statico omog. (Som) Altezza bario. sez. om. % Momento d'inerza omogenizzato (J Carichi interasse 1.00 m Peso proprio (pp)	(Ec=50%E c) Jom) N/mq	3163043 256 127917946.7 Ec,iniz.): 13 7849.101618 1765222 225 105822402.7 Coeff y di SLU	mm mm^4 . mm^2 mm^3 mm mm^4 Coeff wdi SLE 1.00	VERIFICHE	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V, C Rd = Verifica SLU taglio appoggio D V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V, C Rd = Verifica flessione SLU sezione (Metodo elastico secondo DM' Incremento di carico risp. a fase costru Incremento di momento Δ M Ed Tensioni estradosso sez. cls (σc)	Mezzei 1 7-01-1 9 utt∆q	169.7 VEd 0 169.7 VEd ria 8 \$4.3.4.2.1 13.44 82 -6.7	kNm < 50% V c,Rd < 50% V c,Rd .1) KN/m kN/m kN/m
	Momento statico omog. (Som) Altezza bario. sez. om. % Momento d'inerza omogenizzato (J Per carichi di lungo termine (Coeff. di omogenizzazione (n=Es/Ec Area omogenizzata (Aom) Momento statico omog. (Som) Altezza bario. sez. om. % Momento d'inerza omogenizzato (J Carichi interasse 1.00 m Peso proprio (pp) Permanente 3.80 ki	(Ec=50%E c) Jom) N/mq N/mq	3163043 256 127917946.7 Ec,iniz.): 13 7849.101618 1765222 225 105822402.7 Coeff y di SLU 1.3	mm mm^4	ACCIAIO+CLS VERIFICHE	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,C, Rd = Verifica SLU taglio appoggio Di V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,C, Rd = Verifica flessione SLU sezione (Metodo elastico secondo DM' Incremento di carico risp. a fase costru Incremento di momento Δ M Ed Tensioni estradosso sez. cls (σc) fedi Tensioni intradosso sez. acciaio (σs)	mezzei 17-01-18 utt∆q	169.7 VEd 0 169.7 VEd ria 8 \$4.3.4.2.1 13.44 82 -6.7 1.96 175.0	kNm < 50% V c,Rd < 50% V c,Rd < 50% V c,Rd KN/m kN/m
=	Momento statico omog. (Som) Altezza bario. sez. om. % Momento d'inerza omogenizzato (J Per carichi di lungo termine (Coeff. di omogenizzata (Aom) Momento statico omog. (Som) Altezza bario. sez. om. % Momento d'inerza omogenizzato (J Carichi interasse 1.00 m Peso proprio (pp) Permanente 3.80 kl Accidentale 4.00 kl	(Ec=50%E c) Jom) n N/mq N/mq N/mq	3163043 256 127917946.7 Ec,iniz.): 13 7849.101618 1765222 225 105822402.7 Coeff y di SLU 1.3 1.5	mm mm^4 . mm^2 mm^3 mm mm^4 Coeff wdi SLE 1.00 1.00 1.00	Z. ACCIAIO+CLS VERIFICHE	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V, C Rd = Verifica SLU taglio appoggio D V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V, C Rd = Verifica flessione SLU sezione (Metodo elastico secondo DM' Incremento di carico risp. a fase costru Incremento di momento Δ M Ed Tensioni estradosso sez. cls (σc)	mezzei 17-01-18 utt∆q	169.7 VEd 0 169.7 VEd ria 8 \$4.3.4.2.1 13.44 82 -6.7	kNm < 50% V c,Rd < 50% V c,Rd .1) KN/m kN/m kN/m
=	Momento statico omog. (Som) Altezza bario. sez. om. % Momento d'inerza omogenizzato (J Per carichi di lungo termine (Coeff. di omogenizzazione (n=Es/Ec Area omogenizzata (Aom) Momento statico omog. (Som) Altezza bario. sez. om. % Momento d'inerza omogenizzato (J Carichi interasse 1.00 m Peso proprio (pp) Permanente 3.80 ki	(Ec=50%E c) Jom) n N/mq N/mq N/mq	3163043 256 127917946.7 Ec,iniz.): 13 7849.101618 1765222 225 105822402.7 Coeff y di SLU 1.3	mm mm^4 . mm^2 mm^3 mm mm^4 Coeff wdi SLE 1.00 1.00 1.00	SEZ. ACCIAIO+CLS VERIFICHE	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V, c Rd = Verifica SLU taglio appoggio D: V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V, c Rd = Verifica flessione SLU sezione (Metodo elastico secondo DM: Incremento di carico risp. a fase costru Incremento di momento Δ M Ed Tensioni estradosso sez. cls (σc) fcdi Tensioni intradosso sez. acciaio (σs)	mezzei 17-01-11 utt∆q	169.7 V Ed 0 169.7 V Ed 713.44 82 -6.7 1.96 175.0	kNm < 50% V c,Rd < 50% V c,Rd .1) KN/m kN/m N/mm^2
Ī	Momento statico omog. (Som) Altezza bario. sez. om. % Momento d'inerza omogenizzato (J Per carichi di lungo termine (Coeff. di omogenizzata (Aom) Momento statico omog. (Som) Altezza bario. sez. om. % Momento d'inerza omogenizzato (J Carichi interasse 1.00 m Peso proprio (pp) 0.00 kl Accidentale 4.00 kl Lineare perm 0.00 kl	Jom) N/mq N/mq N/mq	3163043 256 127917946.7 Ec,iniz.): 13 7849.101618 176522 225 105822402.7 Coeff y di SLU 1.3 1.5 1.5	mm mm^4 . mm^2 mm^3 mm mm^4 Coeff wdi SLE 1.00 1.00 1.00	SEZ. ACCIAIO+CLS VERIFICHE	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V, c Rd = Verifica SLU taglio appoggio D: V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V, c Rd = Verifica flessione SLU sezione (Metodo elastico secondo DM: Incremento di carico risp. a fase costru Incremento di momento Δ M Ed Tensioni estradosso sez. cls (σc) fedi Verifica SLU connettori a taglio	mezzei 17-01-11 utt∆q	169.7 V Ed 0 169.7 V Ed ria B \$4.3.4.2.1 13.44 82 -6.7 1.96 175.0 1.06	kNm < 50% V o,Rd < 50% V o,Rd .1) KN/m kN/m N/mm^2 N/mm^2
	Momento statico omog. (Som) Altezza baric. sez. om. % Momento d'inerza omogenizzato (J Per carichi di lungo termine (Coeff. di omogenizzazione (n=Es/Er Area omogenizzata (Aom) Momento statico omog. (Som) Altezza baric. sez. om. % Momento d'inerza omogenizzato (J Carichi interasse 1.00 m Peso proprio (pp) 0.00 kl Accidentale 4.00 kl Lineare perm 0.00 kl Carico lineare di SLU tot =	(Ec=50%E c) Jom) N/mq N/mq N/mq N/mq	3163043 256 127917946.7 Ec,iniz.): 13 7849.101618 176522 225 105822402.7 Coeff y di SLU 1.3 1.5 1.5	mm mm^4 . mm^2 mm^3 mm mm^4 Coeff wdi SLE 1.00 1.00 1.00	SLU SEZ. ACCIAIO+CLS YERIFICHE	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd Y Ed I Y,c Rd = Verifica SLU taglio appoggio D: V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd Y Ed I Y,c Rd = Verifica flessione SLU sezione (Metodo elastico secondo DM: Incremento di carico risp. a fase costru Incremento di momento Δ M Ed Tensioni estradosso sez. cls (σc) fcdi Tensioni intradosso sez. acciaio (σs) fydi Verifica SLU connettori a taglio Δ V Ed max (appoggi)	mezzei 17-01-13 utt∆q ! o e	169.7 V Ed 0 169.7 V Ed 71a B §4.3.4.2.1 13.44 82 -6.7 1.96 175.0 1.06	kNm < 50% V o,Rd < 50% V o,Rd .1) KN/m kN/m N/mm^2 N/mm^2 UNI 10011) kN
Ī	Momento statico omog. (Som) Altezza baric. sez. om. % Momento d'inerza omogenizzato (J Per carichi di lungo termine (Coeff. di omogenizzazione (n=Es/Ec Area omogenizzata (Aom) Momento statico omog. (Som) Altezza baric. sez. om. % Momento d'inerza omogenizzato (J Carichi interasse 1.00 m Peso proprio (pp) 0.00 kl Permanente 3.80 kl Accidentale 4.00 kl Lineare perm 0.00 kl Carico lineare di SLU tot = Verifica a SLE (deformazioni)	(Ec=50%E c) Jom) N/mq N/mq N/mq N/mq	3163043 256 127917946.7 Ec,iniz.): 13 7849.101618 1765222 105822402.7 Coeff y di SLU 1.3 1.5 1.5 1.5	mm mm^4 mm^2 mm^3 mm mm^4 Coeff \(\psi \) di SLE 1.00 1.00 1.00	SLU SEZ. ACCIAIO+CLS YERIFICHE	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,C, Rd = Verifica SLU taglio appoggio Di V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,C, Rd = Verifica flessione SLU sezione (Metodo elastico secondo DM' Incremento di carico risp. a fase costru Incremento di momento Δ M Ed Tensioni estradosso sez. cls (σc) fedi Tensioni intradosso sez. acciaio (σs) fgdi Verifica SLU connettori a taglio Δ V Ed max (appoggi) Momento statico sezione omogenizza	mezzer 17-01-1s utt∆q !ore ors frif.no	169.7 VEd 0 169.7 VEd 7ia 8 \$4.3.4.2.1 13.44 82 -6.7 1.96 175.0 1.06 0rme CNR 47.1 406389	kNm < 50% V o,Rd < 50% V o,Rd .1) KN/m kNm N/mm^2 N/mm^2 UNI 10011) kN mm^3
=	Momento statico omog. (Som) Altezza bario. sez. om. % Momento d'inerza omogenizzato (J Per carichi di lungo termine (Coeff. di omogenizzazione (n=Es/Ec Area omogenizzata (Aom) Momento statico omog. (Som) Altezza bario. sez. om. % Momento d'inerza omogenizzato (J Carichi interasse 1.00 m Peso proprio (pp) 0.00 kl Permanente 3.80 kl Accidentale 4.00 kl Lineare perm 0.00 kl Carico lineare di SLU tot = Verifica a SLE (deformazioni) Premonta assegnata al profilo	(Ec=50%E c) Jom) N/mq N/mq N/mq N/mq N/m	3163043 256 127917946.7 [c,iniz.]: 13 7849.101618 176522 225 105822402.7 Coeff y di SLU 1.3 1.5 1.5 1.5 1.5 kN/m	mm mm^4 . mm^2 mm^3 mm mm^4 Coeff wdi SLE 1.00 1.00 1.00	SLU SEZ. ACCIAIO+CLS YERIFICHE	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd Y Ed / Yc, Rd = Verifica SLU taglio appoggio Di V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed / Yc, Rd = Verifica flessione SLU sezione (Metodo elastico secondo DM' Incremento di carico risp. a fase costru Incremento di momento Δ M Ed Tensioni estradosso sez. cls (σc) fodi Tensioni intradosso sez. acciaio (σs) fydi Verifica SLU connettori a taglio Δ V Ed max (appoggi) Momento statico sezione omogenizza Taglio di progetto per ogni connettore	mezzer 17-01-16 utt∆q 1'ore (rif.ne	169.7 VEd 0 169.7 VEd 188.4.3.4.2.1 13.44 82 -6.7 1.96 175.0 1.06 DIMME CNR 47.1 406389 36.14	kNm < 50% V o,Rd < 50% V o,Rd .1) KN/m kNm N/mm^2 N/mm^2 UNI 10011) kN mm^3 kN
=	Momento statico omog. (Som) Altezza bario. sez. om. % Momento d'inerza omogenizzato (J Per carichi di lungo termine (Coeff. di omogenizzata (Aom) Momento statico omog. (Som) Altezza bario. sez. om. % Momento d'inerza omogenizzato (J Carichi interasse 1.00 m Peso proprio (pp) Permanente 3.80 kl Accidentale 4.00 kl Lineare perm 0.00 kl Carico lineare di SLU tot = Verifica a SLE (deformazioni) Premonta assegnata al profilo Previsto puntellamento fase getto?	(Ec=50%E c) Jom) N/mq N/mq N/mq N/mq N/m	3163043 256 127917946.7 Ec,iniz.): 13 7849.101618 1765222 105822402.7 Coeff y di SLU 1.3 1.5 1.5 1.5	mm mm^4 mm^2 mm^3 mm mm^4 Coeff \(\psi \) di SLE 1.00 1.00 1.00	SLU SEZ. ACCIAIO+CLS YERIFICHE	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd Y Ed I V, C, Rd = Verifica SLU taglio appoggio Di V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V, C, Rd = Verifica flessione SLU sezione (Metodo elastico secondo DM Incremento di carico risp. a fase costru Incremento di momento Δ M Ed Tensioni estradosso sez. cls (σc) fcdi Tensioni intradosso sez. acciaio (σs) fgdi Verifica SLU connettori a taglio Δ V Ed max (appoggi) Momento statico sezione omogenizza Taglio di progetto per ogni connettore Resistenza di progetto connettore (P F	mezzer 17-01-16 utt∆q 1'ore (rif.ne	169.7 VEd 0 169.7 VEd 7ia 8 \$4.3.4.2.1 13.44 82 -6.7 1.96 175.0 1.06 0rme CNR 47.1 406389	kNm < 50% V o,Rd < 50% V o,Rd .1) KN/m kNm N/mm^2 N/mm^2 UNI 10011) kN mm^3 kN
CARICHI	Momento statico omog. (Som) Altezza bario. sez. om. % Momento d'inerza omogenizzato (J Per carichi di lungo termine (Coeff. di omogenizzazione (n=Es/Ec Area omogenizzata (Aom) Momento statico omog. (Som) Altezza bario. sez. om. % Momento d'inerza omogenizzato (J Carichi interasse 1.00 m Peso proprio (pp) 0.00 kl Permanente 3.80 kl Accidentale 4.00 kl Lineare perm 0.00 kl Carico lineare di SLU tot = Verifica a SLE (deformazioni) Premonta assegnata al profilo	(Ec=50%E c) Jom) N/mq N/mq N/mq N/mq N/m	3163043 256 127917946.7 [c,iniz.]: 13 7849.101618 176522 225 105822402.7 Coeff y di SLU 1.3 1.5 1.5 1.5 1.5 kN/m	mm mm^4 mm^2 mm^3 mm mm^4 Coeff \(\psi \) di SLE 1.00 1.00 1.00	SEZ. ACCIAIO+CLS VERIFICHE	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd Y Ed / Yc, Rd = Verifica SLU taglio appoggio Di V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed / Yc, Rd = Verifica flessione SLU sezione (Metodo elastico secondo DM' Incremento di carico risp. a fase costru Incremento di momento Δ M Ed Tensioni estradosso sez. cls (σc) fodi Tensioni intradosso sez. acciaio (σs) fydi Verifica SLU connettori a taglio Δ V Ed max (appoggi) Momento statico sezione omogenizza Taglio di progetto per ogni connettore	mezzer 17-01-16 utt∆q 1'ore (rif.ne	169.7 VEd 0 169.7 VEd 188.4.3.4.2.1 13.44 82 -6.7 1.96 175.0 1.06 DIMME CNR 47.1 406389 36.14	kNm < 50% V o,Rd < 50% V o,Rd .1) KN/m kNm N/mm^2 N/mm^2 UNI 10011) kN mm^3 kN
CARICHI	Momento statico omog. (Som) Altezza bario. sez. om. % Momento d'inerza omogenizzato (J Per carichi di lungo termine (Coeff. di omogenizzazione (n=Es/Ec Area omogenizzata (Aom) Momento statico omog. (Som) Altezza bario. sez. om. % Momento d'inerza omogenizzato (J Carichi interasse 1.00 m Peso proprio (pp) 0.00 kl Permanente 3.80 kl Accidentale 4.00 kl Lineare perm 0.00 kl Carico lineare di SLU tot = Verifica a SLE (deformazioni) Premonta assegnata al profilo Previsto puntellamento fase getto? Carico fase costruttiva (soletta non	Jom) N/mq N/mq N/mq N/mq N/m 13.44)	3163043 256 127917946.7 [c,iniz.]: 13 7849.101618 176522402.7 Coeff y di SLU 1.3 1.5 1.5 1.5 kM/m 0 SI	mm mm^4mm^2mm^2mm^3mm^4 di SLE	SLU SEZ. ACCIAIO+CLS YERIFICHE	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd Y Ed I V, C, Rd = Verifica SLU taglio appoggio Di V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V, C, Rd = Verifica flessione SLU sezione (Metodo elastico secondo DM Incremento di carico risp. a fase costru Incremento di momento Δ M Ed Tensioni estradosso sez. cls (σc) fcdi Tensioni intradosso sez. acciaio (σs) fgdi Verifica SLU connettori a taglio Δ V Ed max (appoggi) Momento statico sezione omogenizza Taglio di progetto per ogni connettore Resistenza di progetto connettore (P F	mezzer 17-01-16 utt∆q 1'ore (rif.ne	169.7 V Ed 0 169.7 V Ed 13 8 \$4.3.4.2.1 13.44 82 -6.7 1.96 175.0 1.06 0 TIME CNR 47.1 406389 36.14 62.55	kNm < 50% V o,Rd < 50% V o,Rd .1) KN/m kNm N/mm^2 N/mm^2 UNI 10011) kN mm^3 kN
CARICHI	Momento statico omog. (Som) Altezza bario. sez. om. % Momento d'inerza omogenizzato (J Per carichi di lungo termine (Coeff. di omogenizzazione (n=Es/Ec Area omogenizzata (Aom) Momento statico omog. (Som) Altezza bario. sez. om. % Momento d'inerza omogenizzato (J Carichi interasse 1.00 m Peso proprio (pp) Permanente 3.80 kl Accidentale 4.00 kl Lineare perm 0.00 kl Carico lineare di SLU tot = Verifica a SLE (deformazioni) Premonta assegnata al profilo Previsto puntellamento fase getto? Carico fase costruttiva (soletta non freccia iniziale 5 /3	Jom) N/mq N/mq N/mq N/m 13.44)	3163043 256 127917946.7 [c,iniz.]: 13 7849.101618 176522402.7 Coeff y di SLU 1.3 1.5 1.5 1.5 1.5 kN/m 0.0	mm mm^4 mm^2 mm^3 mm mm^4 di SLE 100 100 100 100 KN/m mm	SLU SEZ. ACCIAIO+CLS YERIFICHE	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd Y Ed I V, C, Rd = Verifica SLU taglio appoggio Di V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V, C, Rd = Verifica flessione SLU sezione (Metodo elastico secondo DM Incremento di carico risp. a fase costru Incremento di momento Δ M Ed Tensioni estradosso sez. cls (σc) fcdi Tensioni intradosso sez. acciaio (σs) fgdi Verifica SLU connettori a taglio Δ V Ed max (appoggi) Momento statico sezione omogenizza Taglio di progetto per ogni connettore Resistenza di progetto connettore (P F	mezzer 17-01-16 utt∆q 1'ore (rif.ne	169.7 V Ed 0 169.7 V Ed 13 8 \$4.3.4.2.1 13.44 82 -6.7 1.96 175.0 1.06 0 TIME CNR 47.1 406389 36.14 62.55	kNm < 50% V o,Rd < 50% V o,Rd .1) KN/m kNm N/mm^2 N/mm^2 UNI 10011) kN mm^3 kN
CARICHI	Momento statico omog. (Som) Altezza bario. sez. om. % Momento d'inerza omogenizzato (J Per carichi di lungo termine (Coeff. di omogenizzazione (n=Es/Ec Area omogenizzata (Aom) Momento statico omog. (Som) Altezza bario. sez. om. % Momento d'inerza omogenizzato (J Carichi interasse 1.00 m Peso proprio (pp) Permanente 3.80 kl Accidentale 4.00 kl Lineare perm 0.00 kl Carico lineare di SLU tot = Verifica a SLE (deformazioni) Premonta assegnata al profilo Previsto puntellamento fase getto? Carico fase costruttiva (soletta non freccia iniziale 5 /3 Carico Permanente (lungo termine)	(Ec=50%E c) Jom) N/mq N/mq N/mq N/mq N/m 13.44) n collab.)	3163043 256 127917946.7 Ec,iniz.]: 13 7849.101618 176522 225 105822402.7 Coeff y di SLU 1.3 1.5 1.5 1.5 1.5 kN/m 0 3.80	mm mm^4mm^2mm^2mm^3mm^4 di SLE	SLU SEZ. ACCIAIO+CLS YERIFICHE	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd Y Ed I V, C, Rd = Verifica SLU taglio appoggio Di V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V, C, Rd = Verifica flessione SLU sezione (Metodo elastico secondo DM Incremento di carico risp. a fase costru Incremento di momento Δ M Ed Tensioni estradosso sez. cls (σc) fcdi Tensioni intradosso sez. acciaio (σs) fgdi Verifica SLU connettori a taglio Δ V Ed max (appoggi) Momento statico sezione omogenizza Taglio di progetto per ogni connettore Resistenza di progetto connettore (P F	mezzer 17-01-16 utt∆q 1'ore (rif.ne	169.7 V Ed 0 169.7 V Ed 13 8 \$4.3.4.2.1 13.44 82 -6.7 1.96 175.0 1.06 0 TIME CNR 47.1 406389 36.14 62.55	kNm < 50% V o,Rd < 50% V o,Rd .1) KN/m kNm N/mm^2 N/mm^2 UNI 10011) kN mm^3 kN
CARICHI	Momento statico omog. (Som) Altezza bario. sez. om. % Momento d'inerza omogenizzato (J Per carichi di lungo termine (Coeff. di omogenizzazione (n=Es/Ec Area omogenizzata (Aom) Momento statico omog. (Som) Altezza bario. sez. om. % Momento d'inerza omogenizzato (J Carichi interasse 1.00 m Peso proprio (pp) Permanente 3.80 kl Accidentale 4.00 kl Lineare perm 0.00 kl Carico lineare di SLU tot = Verifica a SLE (deformazioni) Premonta assegnata al profilo Previsto puntellamento fase getto? Carico fase costruttiva (soletta non freccia iniziale 5 /3	(Ec=50%E c) Jom) N/mq N/mq N/mq N/mq N/m 13.44) n collab.)	3163043 256 127917946.7 Ec,iniz.]: 13 7849.101618 176522 225 105822402.7 Coeff y di SLU 1.3 1.5 1.5 1.5 1.5 kN/m 0 3.80 4.00	mm mm^4mm^2mm^2mm^3mm^4 di SLE	SLU SEZ. ACCIAIO+CLS YERIFICHE	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd Y Ed I V, C, Rd = Verifica SLU taglio appoggio Di V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V, C, Rd = Verifica flessione SLU sezione (Metodo elastico secondo DM Incremento di carico risp. a fase costru Incremento di momento Δ M Ed Tensioni estradosso sez. cls (σc) fcdi Tensioni intradosso sez. acciaio (σs) fgdi Verifica SLU connettori a taglio Δ V Ed max (appoggi) Momento statico sezione omogenizza Taglio di progetto per ogni connettore Resistenza di progetto connettore (P F	mezzer 17-01-16 utt∆q 1'ore (rif.ne	169.7 V Ed 0 169.7 V Ed 13 8 \$4.3.4.2.1 13.44 82 -6.7 1.96 175.0 1.06 0 TIME CNR 47.1 406389 36.14 62.55	kNm < 50% V o,Rd < 50% V o,Rd .1) KN/m kNm N/mm^2 N/mm^2 UNI 10011) kN mm^3 kN
CARICHI	Momento statico omog. (Som) Altezza bario. sez. om. % Momento d'inerza omogenizzato (J Per carichi di lungo termine (Coeff. di omogenizzazione (n=Es/Ec Area omogenizzata (Aom) Momento statico omog. (Som) Altezza bario. sez. om. % Momento d'inerza omogenizzato (J Carichi interasse 1.00 m Peso proprio (pp) Permanente 3.80 kl Accidentale 4.00 kl Lineare perm 0.00 kl Carico lineare di SLU tot = Verifica a SLE (deformazioni) Premonta assegnata al profilo Previsto puntellamento fase getto? Carico fase costruttiva (soletta non freccia iniziale 5 /3 Carico Permanente (lungo termine)	(Ec=50×E c) Jom) N/mq N/mq N/mq N/mq 13.44) p n collab.) 184 = = = = = = = = = = = = =	3163043 256 127917946.7 Ec,iniz.]: 13 7849.101618 176522 225 105822402.7 Coeff y di SLU 1.3 1.5 1.5 1.5 1.5 kN/m 0 3.80 4.00	mm mm^4mm^2mm^2mm^3mm^4 di SLE	SLU SEZ. ACCIAIO+CLS YERIFICHE	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd Y Ed I V, C, Rd = Verifica SLU taglio appoggio Di V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V, C, Rd = Verifica flessione SLU sezione (Metodo elastico secondo DM Incremento di carico risp. a fase costru Incremento di momento Δ M Ed Tensioni estradosso sez. cls (σc) fcdi Tensioni intradosso sez. acciaio (σs) fgdi Verifica SLU connettori a taglio Δ V Ed max (appoggi) Momento statico sezione omogenizza Taglio di progetto per ogni connettore Resistenza di progetto connettore (P F	mezzer 17-01-16 utt∆q 1'ore (rif.ne	169.7 V Ed 0 169.7 V Ed 13 8 \$4.3.4.2.1 13.44 82 -6.7 1.96 175.0 1.06 0 TIME CNR 47.1 406389 36.14 62.55	kNm < 50% V o,Rd < 50% V o,Rd .1) KN/m kNm N/mm^2 N/mm^2 UNI 10011) kN mm^3 kN
Deformazioni CABICHI	Momento statico omog. (Som) Altezza bario. sez. om. % Momento d'inerza omogenizzato (J Per carichi di lungo termine (Coeff. di omogenizzazione (n=Es/Ec Area omogenizzata (Aom) Momento statico omog. (Som) Altezza bario. sez. om. % Momento d'inerza omogenizzato (J Carichi interasse 1.00 m Peso proprio (pp) 0.00 kl Permanente 3.80 kl Accidentale 4.00 kl Lineare perm 0.00 kl Carico lineare di SLU tot = Verifica a SLE (deformazioni) Premonta assegnata al profilo Previsto puntellamento fase getto? Carico fase costruttiva (soletta non freccia iniziale 5/3 Carico Permanente (lungo termine) Carico accidentale (breve termine): 5 amm totale = 1/2 250 L:	(Ec=50%Ec) Jom) N/mq N/mq N/mq N/mq N/m 13.44) on collab.) 184 = = = = = = = = = = = = = = = = = = =	3163043 256 127917946.7 Ec,iniz.]: 13 7849.101618 176522 225 105822402.7 Coeff y di SLU 1.3 1.5 1.5 1.5 1.5 2.6 2.6 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7	mm mm^4mm^2mm^2mm^3mm^4 di SLE	SLU SEZ. ACCIAIO+CLS YERIFICHE	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd Y Ed I V, C, Rd = Verifica SLU taglio appoggio Di V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V, C, Rd = Verifica flessione SLU sezione (Metodo elastico secondo DM Incremento di carico risp. a fase costru Incremento di momento Δ M Ed Tensioni estradosso sez. cls (σc) fcdi Tensioni intradosso sez. acciaio (σs) fgdi Verifica SLU connettori a taglio Δ V Ed max (appoggi) Momento statico sezione omogenizza Taglio di progetto per ogni connettore Resistenza di progetto connettore (P F	mezzer 17-01-16 utt∆q 1'ore (rif.ne	169.7 V Ed 0 169.7 V Ed 13 8 \$4.3.4.2.1 13.44 82 -6.7 1.96 175.0 1.06 0 TIME CNR 47.1 406389 36.14 62.55	kNm < 50% V o,Rd < 50% V o,Rd .1) KN/m kNm N/mm^2 N/mm^2 UNI 10011) kN mm^3 kN
CARICHI	Momento statico omog. (Som) Altezza bario. sez. om. % Momento d'inerza omogenizzato (J Per carichi di lungo termine (Coeff. di omogenizzazione (n=Es/Ec Area omogenizzata (Aom) Momento statico omog. (Som) Altezza bario. sez. om. % Momento d'inerza omogenizzato (J Carichi interasse 1.00 m Peso proprio (pp) 0.00 kl Permanente 3.80 kl Accidentale 4.00 kl Lineare perm 0.00 kl Carico lineare di SLU tot = Verifica a SLE (deformazioni) Previsto puntellamento fase getto? Carico fase costruttiva (soletta non freccia iniziale 5/3 Carico Permanente (lungo termine) Carico accidentale (breve termine) :	(Ec=50%Ec)	3163043 256 127917946.7 Ec,iniz.): 13 7849.101618 176522 225 105822402.7 Coeff 7 di SLU 1.3 1.5 1.5 1.5 kN/m 0 SI - 0.0 3.80 4.00 28.0 10.2	mm mm^4mm^2mm^2mm^2mm^3mm^4 di SLE100100100100100	SLU SEZ. ACCIAIO+CLS YERIFICHE	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd Y Ed I V, C, Rd = Verifica SLU taglio appoggio Di V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V, C, Rd = Verifica flessione SLU sezione (Metodo elastico secondo DM Incremento di carico risp. a fase costru Incremento di momento Δ M Ed Tensioni estradosso sez. cls (σc) fcdi Tensioni intradosso sez. acciaio (σs) fgdi Verifica SLU connettori a taglio Δ V Ed max (appoggi) Momento statico sezione omogenizza Taglio di progetto per ogni connettore Resistenza di progetto connettore (P F	mezzer 17-01-16 utt∆q 1'ore (rif.ne	169.7 V Ed 0 169.7 V Ed 13 8 \$4.3.4.2.1 13.44 82 -6.7 1.96 175.0 1.06 0 TIME CNR 47.1 406389 36.14 62.55	kNm < 50% V o,Rd < 50% V o,Rd .1) KN/m kNm N/mm^2 N/mm^2 UNI 10011) kN mm^3 kN

Si riporta la verifica del solaio tipo B del primo piano che risulta utilizzabile quale sottotetto con i carichi indicati in precedenza:

VE	DIFICA DINEO	DZO TDAVI IDN 4	CO VOLTA	D soft	oto	tto.		
VE	Codice sezione	DRZO TRAVI IPN 1		NORM	ote	llO Coefficienti di sicurezza lato materiali		
	altezza trave (h)	IIII SEZIOIAE.		mm		ACCIAIO CARPENTERIA	-	
	larghezza ali (b)			mm		y M0 = Resistenza =	1.05	
	Spessore anima (tw	n		mm		y M1 = Instabilità =	1.05	
	Spessore ala (tf)	,	_	mm		y M1 = Instabilità ponti =	1.10	
	Raggio di raccordo	(1)		mm		γ M2 = Resistenza sez, tese	1.25	
	Area (A)	()		mm^2		CALCESTRUZZO	115.0	
	Area taglio (A v)			mm^2		γ M0 = Resistenza =	1,50	
	Peso proprio (pp)			N/m		ACCIAIO CONNETTORI (da c.a.)		
	Momento d'Inerzia i	princ. X (Lu)	8690000			γ M0 = Resistenza =	1,15	
	Modulo di resistenz		109000					
		a pr. Y (Wy,pl) Plastico	124000			Tipo di acciaio carpenteria: ESISTENT	F1C1ffe	=135)
	raggio d'inerzia mag			mm		Tensione di snervamento car. f uk =		N/mmg
တ	Momento d'Inerzia p		683000			Tensione di snerv. di calcolo f yd =		N/mmg
ᅙ	Modulo di resistenz		16700	mm^3		Modulo elastico normale (Ea) =	206000	
Ř	Modulo di resistenz	a pr. Z(Wz) Plastico	26100	mm^3		Modulo elastico tangenziale (Ga) =	80000	N/mmg
ACC-CLS	raggio d'inerzia mino	ore (i z)	18.4	mm	E	Coeff. Dilatazione termica	0.000012	1/°C
	Momento d'inerzia t	torsionale (I t)	35400	mm^4	N	Tipo di calcestruzzo: Rck	28	LECACLS
COMPOSTA	Calcestruzzo				UTILIZZATI	Res, cilindrica caratt. fck	23.24	Nłmmq
Ö	Spessore soletta (h	ic)	6	cm	I≓I	Coefficiente lungo term. acc	0.85	-
支	Altezza di raccordo	soletta-profilo (hr)	0	cm	 	Res, cilindrica di calcolo fod	13.17	Nłmmq
Ō	Larghezza media rac	ccordo soletta-profilo (br)	0	cm	I₽I	Modulo elasticità Ec	30962	N/mmq
	Interasse travi accia	aio	100	cm	≱	Peso di volume calcestruzzo yols	18	N/mm^3
21	Largh eff. soletta (b	eff)	100	cm	▣	Tipo di acciaio connettori: B	450	C
SEZIONE	Elementi Conne	ttori: RETE ELE	TTROSALD.		MATERIALI	Tensione di snervamento car. f yk =	450	N∤mmq
ŭ	Diametro staffa		8	mm	ĮΣ	Tensione di snerv. di calcolo f yd =	391.3	Nłmmg
	Angolo staffa-piatta	abanda 🛚	0	gradi	г	<u> </u>		
GEOMETRIA	Passo longitudinale	staffe	20	cm		Tensioni di SLU indotte nell'acciaio in	fase di ge	tto
ΕI	Geometria trave		4.2	m	15	Carico SLU fase costrutt. (soletta non collab.)		KN/m
Σ	Presenza di piatti sa	aldati alle ali	NO		12	M Ed fase costrutt. (soletta non collab.)	0.0	kNm
	base		0	mm	15	Tensioni intradosso sez. acciaio (σa,i)	0.0	N/mm^2
5	spessore		0	mm	Œ	Tensioni estradosso sez. acciaio (σa,i)	0.0	N/mm^3
		e rispetto all'acciaio			COSTRUTTIVA	Verifica flessione SLU sezione mezzer		
N		eve termine (Ec=Ec,ir				Momento resistente elastico acciaio MRd	19.9	kNm
SEZ	Coeff, di omogenizz		6.7		SE	M Rd / M Ed =		
	A	, ,						
	i Area omogenizzata	(Aom)	11028	mm 2	E .	l Verifica SLU taglio appoggio SX		
	Area omogenizzata Momento statico o		11028 1874259		UF	Verifica SLU taglio appoggio SX V Ed appoggio fase costruttiva	0.0	kNm
	Momento statico o Altezza bario, sez, o	mog. (Som) m. x _a	187 4 259 170	mm^3	SLU FASE	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd	0.0 102.0	
	Momento statico o Altezza baric, sez, o Momento d'inerza o	mog. (Som) m. x _e omogenizzato (Jom)	1874259 170 31283716.22	mm^3		V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed / V,c Rd =	102.0	kNm
	Momento statico o Altezza baric, sez, o Momento d'inerza d Per carichi di lu i	.mog. (Som) m. x _e omogenizzato (Jom) ngo termine (Ec=50%)	1874259 170 31283716.22 Ec,iniz.):	mm^3 mm mm^4		V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed / V,c Rd = Verifica SLU taglio appoggio DX	102.0 V Ed	kNm
	Momento statico o Altezza baric, sez, o Momento d'inerza o Per carichi di lu Coeff, di omogenizz	mog. (Som) m. x _a omogenizzato (Jom) ngo termine (Ec=50%) zazione (n=Es/Ec)	1874259 170 31283716.22 Ec,iniz.): 13	mm^3 mm mm^4		V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,C Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva	102.0 V Ed	kNm
	Momento statico o Altezza baric, sez, o Momento d'inerza d Per carichi di lu Coeff, di omogenizz Area omogenizzata	mog. (Som) m. % omogenizzato (Jom) omogenizzato (Ec= 50%) eazione (n=Es/Ec) (Aom)	1874259 170 31283716.22 Ec,iniz.): 13 6519.101618	mm^3 mm mm^4 mm^2	VERIFICHE SLU FA	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed / V,c Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd	102.0 V Ed 0 102.0	kNm < 50% V c,Rd
	Momento statico o Altezza baric, sez, o Momento d'inerza d Per carichi di lu Coeff, di omogenizz Area omogenizzata Momento statico o	mog. (Som) m. x _c omogenizzato (Jom) ngo termine (Ec= 50%) tazione (n=Es/Ec) (Aom) mog. (Som)	1874259 170 31283716.22 Ec,iniz.): 13 6519.101618 1017529	mm^3 mm mm^4 mm^2 mm^3		V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed / V,c Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed / V,c Rd =	102.0 V Ed 0 102.0 V Ed	kNm
OMOGENIZZAZIONE	Momento statico o Altezza bario, sez, o Momento d'inerza o Per carichi di lu Coeff, di omogenizza Area omogenizzata Momento statico o Altezza bario, sez, o	mog. (Som) m. x _c omogenizzato (Jom) ngo termine (Ec= 50%) tazione (n=Es/Ec) (Aom) mog. (Som)	1874259 170 31283716.22 Ec,iniz.): 13 6519.101618 1017529	mm ² mm mm ⁴ mm ² mm ³	VERIFICHE	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed / V,c Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd	102.0 V Ed 0 102.0 V Ed	kNm < 50% V c,Rd < 50% V c,Rd
	Momento statico o Altezza baric, sez, o Momento d'inerza o Per carichi di luu Coeff, di omogenizzata Area omogenizzata Momento statico o Altezza baric, sez, o Momento d'inerza o	mog. (Som) m. % m. so mogenizzato (Jom) ngo termine (Ec=50×1 tazione (n=Es/Ec) (Aom) mog. (Som) m. %	1874259 170 31283716.22 Ec,iniz.): 13 6519.101618 1017529 156 26864965.65	mm^3 mm mm^4 mm^2 mm^3 mm	VERIFICHE	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica flessione SLU sezione mezzer [Metodo elastico secondo DM14-01-01 Incremento di carico risp. a fase costrutt∆q	102.0 V Ed 0 102.0 V Ed ia 8 \$4.3.4.2. 8.81	kNm < 50% V c,Rd < 50% V c,Rd 1.1) KN/m
	Momento statico o Altezza baric, sez. o Momento d'inerza c Per carichi di lui Coeff. di omogenizza Area omogenizzata Momento statico o Altezza baric, sez. o Momento d'inerza c Carichi	mog. (Som) m. % m. % m. % mogenizzato (Jom) mgo termine (Ec=50%) zazione (n=Es/Ec) (Aom) mog. (Som) m. % omogenizzato (Jom)	1874259 170 31283716.22 Ec,iniz.): 13 6519.101618 1017529 156 26864965.65	mm^3 mm mm^4 .mm^2 mm^3 mm mm^4	VERIFICHE	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V, c Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V, c Rd = Verifica flessione SLU sezione mezzer (Metodo elastico secondo DM14-01-0) Incremento di carico risp. a fase costrutt∆q Incremento di momento ∆ M Ed	102.0 V Ed 0 102.0 V Ed ia 8 \$4.3.4.2. 8.81 19	kNm < 50% V c,Rd < 50% V c,Rd 1.1) KN/m kN/m
	Momento statico o Altezza baric, sez, o Momento d'inerza o Per carichi di luu Coeff, di omogenizzata Area omogenizzata Momento statico o Altezza baric, sez, o Momento d'inerza o	mog. (Som) m. % m. so mogenizzato (Jom) ngo termine (Ec=50×1 tazione (n=Es/Ec) (Aom) mog. (Som) m. %	1874259 170 31283716.22 Ec,iniz.): 13 6519.101618 1017529 156 26864965.65 Coeff 7 di SLU	mm^3 mm mm^4 . mm^2 mm^3 mm mm^4 Coeff di SLE	VERIFICHE	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica flessione SLU sezione mezzer [Metodo elastico secondo DM14-01-01 Incremento di carico risp. a fase costrutt∆q	102.0 V Ed 0 102.0 V Ed ia 8 \$4.3.4.2. 8.81 19	kNm < 50% V c,Rd < 50% V c,Rd 1.1) KN/m
	Momento statico o Altezza baric, sez. o Momento d'inerza c Per carichi di lui Coeff. di omogenizza Area omogenizzata Momento statico o Altezza baric, sez. o Momento d'inerza c Carichi	mog. (Som) m. % m. % m. % mogenizzato (Jom) mgo termine (Ec=50%) zazione (n=Es/Ec) (Aom) mog. (Som) m. % omogenizzato (Jom)	1874259 170 31283716.22 Ec,iniz.): 13 6519.101618 1017529 156 26864965.65	mm^3 mm mm^4 .mm^2 mm^3 mm mm^4 Coeff \(\nu\)	VERIFICHE	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V.c Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V.c Rd = Verifica flessione SLU sezione mezzer (Metodo elastico secondo DM14-01-0: Incremento di carico risp. a fase costrutt.Δq Incremento di momento Δ M Ed Tensioni estradosso sez. cls (σc) fedI/σc	102.0 V Ed 0 102.0 V Ed ia 8 \$4.3.4.2. 8.81 19	kNm < 50% V c,Rd < 50% V c,Rd 1.1) KN/m kN/m
	Momento statico o Altezza baric, sez, o Momento d'inerza c Per carichi di lui Coeff, di omogenizza Area omogenizzata Momento statico o Altezza baric, sez, o Momento d'inerza c Carichi interasse	mog. (Som) m. x ₀ m. x ₀ m. x ₀ mogenizzato (Jom) mgo termine (Ec=50×1 tazione (n=Es/Ec) (Aom) mog. (Som) m. x ₀ mogenizzato (Jom) 1.00 m	1874259 170 31283716.22 Ec,iniz.): 13 6519.101618 1017529 156 26864965.65 Coeff 7 di SLU	mm^3 mm mm^4 .mm^2 mm^3 mm mm^4 di SLE	ACCIAIO+CLS VERIFICHE	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V.c Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V.c Rd = Verifica flessione SLU sezione mezzer (Metodo elastico secondo DM14-01-0) Incremento di carico risp. a fase costrutt∆q Incremento di momento ∆ M Ed Tensioni estradosso sez. cls (σc)	102.0 V Ed 0 102.0 V Ed ia 8 \$4.3.4.2. 8.81 19 -3.5 3.79	kNm < 50% V c,Rd < 50% V c,Rd 1.1) KN/m kN/m
OMOGENIZZAZIONE	Momento statico o Altezza baric. sez. o Momento d'inerza c Per carichi di lui Coeff. di omogenizzata momento statico o Altezza baric. sez. o Momento d'inerza c Carichi interasse Peso proprio (pp)	mog. (Som) m. % m. % m. % mogenizzato (Jom) mgo termine (Ec=50×1 tazione (n=Es/Ec) (Aom) mog. (Som) m. % mogenizzato (Jom) 1.00 m 0.00 kN/mq	1874259 170 31283716.22 Ec,iniz.): 13 6519.101618 1017529 156 26864965.65 Coeff y di SLU	mm*3 mm mm*4 .mm*2 mm*3 mm mm*4 di SLE	ACCIAIO+CLS VERIFICHE	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V.c Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V.c Rd = Verifica flessione SLU sezione mezzer (Metodo elastico secondo DM14-01-0: Incremento di carico risp. a fase costrutt.Δq Incremento di momento Δ M Ed Tensioni estradosso sez. cls (σc) fedI/σc	102.0 V Ed 0 102.0 V Ed ia 8 \$4.3.4.2. 8.81 19 -3.5 3.79	kNm < 50% V c,Rd < 50% V c,Rd < 50% V c,Rd L1) KNI/m kNm N/mm*2
OMOGENIZZAZIONE	Momento statico o Altezza baric. sez. o Momento d'inerza c Per carichi di lui Coeff. di omogenizzata momento statico o Altezza baric. sez. o Momento d'inerza c Carichi interasse Peso proprio (pp) Permanente	mog. (Som) m. % m. % mogenizzato (Jom) mgo termine (Ec=50×1 razione (n=Es/Ec) (Aom) mog. (Som) m. % mogenizzato (Jom) 1.00 m 0.00 kN/mq 3.80 kN/mq	1874259 170 31283716.22 Ec,iniz.): 13 6519.101618 1017529 156 26864965.65 Coeff 7 di SLU	mm ² mm mm ⁴	SEZ. ACCIAIO+CLS VERIFICHE	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica flessione SLU sezione mezzer (Metodo elastico secondo DM14-01-0: Incremento di carico risp. a fase costrutt∆q Incremento di momento ∆ M Ed Tensioni estradosso sez. cls (σc) fedI/Oc Tensioni intradosso sez. acciaio (σs)	102.0 V Ed 0 102.0 V Ed ia 8 \$4.3.4.2. 8.81 19 -3.5 3.79 112.9	kNm < 50% V c,Rd < 50% V c,Rd < 50% V c,Rd L1) KNI/m kNm N/mm*2
ARICHI OMOGENIZZAZIONE	Momento statico o Altezza baric. sez. o Momento d'inerza c Per carichi di lui Coeff. di omogenizza Area omogenizzata Momento statico o Altezza baric. sez. o Momento d'inerza c Carichi interasse Peso proprio (pp) Permanente Accidentale Lineare perm	.mog. (Som) m. x _c m. x _c m. x _c m. x _c mogenizzato (Jom) mgo termine (Ec=50×1 zazione (n=Es/Ec) (Aom) mog. (Som) m. x _c mogenizzato (Jom) 1.00 m 0.00 kN/mq 3.80 kN/mq 0.00 kN/m	1874259 170 31283716.22 Ec,iniz.): 13 6519.101618 1017529 156 26864965.65 Coeff y di SLU 1.3 1.5	mm*3 mm mm*4	LU SEZ. ACCIAIO+CLS YERIFICHE	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica flessione SLU sezione mezzer (Metodo elastico secondo DM14-01-0: Incremento di carico risp. a fase costrutt∆q Incremento di momento ∆ M Ed Tensioni estradosso sez. cls (σc) fedI/Oc Tensioni intradosso sez. acciaio (σs)	102.0 V Ed 0 102.0 V Ed ia 8 \$4.3.4.2. 8.81 19 -3.5 3.79 112.9 1.62	kNm < 50% V c,Rd < 50% V c,Rd 1.1) KN/m kNm N/mm*2 N/mm*2
OMOGENIZZAZIONE	Momento statico o Altezza baric, sez, o Momento d'inerza o Per carichi di lui Coeff, di omogenizzata Momento statico o Altezza baric, sez, o Momento d'inerza o Carichi interasse Peso proprio (pp) Permanente Accidentale	.mog. (Som) m. x _c m. x _c m. x _c m. x _c mogenizzato (Jom) mgo termine (Ec=50×1 zazione (n=Es/Ec) (Aom) mog. (Som) m. x _c mogenizzato (Jom) 1.00 m 0.00 kN/mq 3.80 kN/mq 0.00 kN/m	1874259 170 31283716.22 Ec,iniz.): 13 6519.101618 1017529 156 26864965.65 Coeff y di SLU 1.3 1.5	mm*3 mm mm*4	LU SEZ. ACCIAIO+CLS YERIFICHE	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica flessione SLU sezione mezzer (Metodo elastico secondo DM14-01-0) Incremento di carico risp. a fase costrutt∆q Incremento di momento Δ M Ed Tensioni estradosso sez. cls (σc) Fediroc Tensioni intradosso sez. acciaio (σs) Fgdiros	102.0 V Ed 0 102.0 V Ed ia 8 \$4.3.4.2. 8.81 19 -3.5 3.79 112.9 1.62	kNm < 50% V c,Rd < 50% V c,Rd 1.1) KN/m kNm N/mm^2 N/mm^2
ARICHI OMOGENIZZAZIONE	Momento statico o Altezza baric. sez. o Momento d'inerza c Per carichi di lui Coeff. di omogenizza Area omogenizzata Momento statico o Altezza baric. sez. o Momento d'inerza c Carichi interasse Peso proprio (pp) Permanente Accidentale Lineare perm	.mog. (Som) m. x _c mog. (Som) m. x _c mogoenizzato (Jom) mgo termine (Ec=50×1 tazione (n=Es/Ec) (Aom) mog. (Som) m. x _c mogenizzato (Jom) 1.00 m 0.00 kN/mq 3.80 kN/mq 1.00 kN/mq 0.00 kN/m	1874259 170 31283716.22 Ec,iniz.]: 3 6519.101618 1017529 156 26864965.65 Coeff y di SLU 1.3 1.5 1.5	mm*3 mm mm*4	LU SEZ. ACCIAIO+CLS YERIFICHE	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V, c Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V, c Rd = Verifica flessione SLU sezione mezzer (Metodo elastico secondo DM14-01-01 Incremento di carico risp. a fase costrutt∆q Incremento di momento Δ M Ed Tensioni estradosso sez. cls (σc) fedIσc Tensioni intradosso sez. acciaio (σs) fgdIσs Verifica SLU connettori a taglio (rif.no	102.0 VEd 0 102.0 VEd ia 8 §4.3.4.2. 8.81 19 -3.5 3.79 112.9 1.62	kNm < 50% V c,Rd < 50% V c,Rd 1.1) KN/m kNm N/mm*2 N/mm*2 UNI 10011) kN
ARICHI OMOGENIZZAZIONE	Momento statico o Altezza baric. sez. o Momento d'inerza o Per carichi di lui Coeff. di omogenizzata Momento statico o Altezza baric. sez. o Momento d'inerza o Carichi interasse Peso proprio (pp) Permanente Accidentale Lineare perm Carico lineare di Verifica a SLE (comenta assegnata)	mog. (Som) m. % mog. (Som) m. % m. % mog. (Som) mgo termine (Ec=50%) mog. (Som) mog. (Som) m. %	1874259 170 31283716.22 Ec,iniz.): 13 6519.101618 1017529 156 26864965.65 Coeff y di SLU 1.3 1.5 1.5 1.5	mm*3 mm mm*4	LU SEZ. ACCIAIO+CLS YERIFICHE	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V.c Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V.c Rd = Verifica flessione SLU sezione mezzer (Metodo elastico secondo DM14-01-0) Incremento di carico risp. a fase costrutt∆q Incremento di momento Δ M Ed Tensioni estradosso sez. cls (σc)	102.0 V Ed 0 102.0 V Ed ia 8 §4.3.4.2. 8 §4.3.4.2. 3.79 112.9 1.62 iorme CNR	kNm < 50% V c,Rd < 50% V c,Rd 1.1) KN/m kNm N/mm*2 N/mm*2 UNI 10011) kN mm*3
ARICHI OMOGENIZZAZIONE	Momento statico o Altezza baric. sez. o Momento d'inerza c Per carichi di lui Coeff. di omogenizza Area omogenizzata Momento statico o Altezza baric. sez. o Momento d'inerza c Carichi interasse Peso proprio (pp) Permanente Accidentale Lineare perm Carico lineare d Verifica a SLE (c	mog. (Som) m. % mog. (Som) m. % m. % mog. (Som) mgo termine (Ec=50%) mog. (Som) mog. (Som) m. %	1874259 170 31283716.22 Ec,iniz.): 13 6519.101618 1017529 156 26864965.65 Coeff y di SLU 1.3 1.5 1.5 1.5	mm"3 mm "4 . mm"2 mm"3 mm mm"4 Coeff illustration 100 100 100 100	LU SEZ. ACCIAIO+CLS YERIFICHE	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica flessione SLU sezione mezzer (Metodo elastico secondo DM14-01-0: Incremento di carico risp. a fase costrutt∆q Incremento di momento Δ M Ed Tensioni estradosso sez. cls (σc)	102.0 V Ed 0 102.0 V Ed ia 8 \$4.3.4.2. 8.81 19 -3.5 3.79 112.9 1.62 vrme CNR 18.5 152929	kNm < 50% V c,Rd < 50% V c,Rd 1.1) KNI/m kNm n/mm^2 N/mm^2 UNI 10011) kN mm^3 kN
CARICHI OMOGENIZZAZIONE	Momento statico o Altezza bario, sez, o Momento d'inerza o Per carichi di lui Coeff, di omogenizzata Momento statico o Altezza bario, sez, o Momento d'inerza o Momento (pp) Permanente Accidentale Lineare perm Carico lineare di Verifica a SLE (d'Premonta assegnal Previsto puntellame	mog. (Som) m. % mog. (Som) m. % m. % mog. (Som) mgo termine (Ec=50%) mog. (Som) mog. (Som) m. %	1874259 170 31283716.22 Ec,iniz.): 13 6519.101618 1017529 156 26864965.65 Coeff y di SLU 1.3 1.5 1.5 1.5	mm"3 mm "4 . mm"2 mm"3 mm mm"4 Coeff illustration 100 100 100 100	SEZ. ACCIAIO+CLS VERIFICHE	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica flessione SLU sezione mezzer (Metodo elastico secondo DM14-01-0: Incremento di carico risp. a fase costrutt∆q Incremento di momento ∆ M Ed Tensioni estradosso sez. cls (crc) fedioc Tensioni intradosso sez. acciaio (crs) fgdios Verifica SLU connettori a taglio (rif.no A V Ed max (appoggi) Momento statico sezione omogenizzata (Sy) Taglio di progetto per ogni connettore (P Ed)	102.0 V Ed 0 102.0 V Ed ia 8 \$4.3.4.2. 8.81 19 -3.5 3.79 112.9 1.62 irme CNR 18.5 152929 21.06	kNm < 50% V c,Rd < 50% V c,Rd 1.1) KNI/m kNm n/mm^2 N/mm^2 UNI 10011) kN mm^3 kN
CARICHI OMOGENIZZAZIONE	Momento statico o Altezza baric, sez, o Momento d'inerza o Per carichi di lui Coeff, di omogenizzata Momento statico o Altezza baric, sez, o Momento d'inerza o Momento (pp) Permanente Accidentale Lineare perm Carico lineare di Yerifica a SLE (e Premonta assegnal Previsto puntellame Carico fase costrut	mog. (Som) m. % mog. (Som) m. % m. % mog. (Som) mgo termine (Ec=50%) mog. (Som) mog. (Som) m. % m	1874259 170 31283716.22 Ec,iniz.): 13 6519.101618 1017529 156 26864965.65 Coeff y di SLU 1.3 1.5 1.5 1.5 1.5 kN/m	mm^3 mm mm^4 . mm^22 mm^3 mm mm^4 Coeff ψ di SLE 100 100 100 100 KN/m	LU SEZ. ACCIAIO+CLS YERIFICHE	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica flessione SLU sezione mezzer (Metodo elastico secondo DM14-01-0: Incremento di carico risp. a fase costrutt∆q Incremento di momento Δ M Ed Tensioni estradosso sez. cls (σc)	102.0 V Ed 0 102.0 V Ed ia 8 \$4.3.4.2. 8.81 19 -3.5 3.79 112.9 1.62 irme CNR 18.5 152929 21.06 39.32	kNm < 50% V c,Rd < 50% V c,Rd 1.1) KNI/m kNm n/mm^2 N/mm^2 UNI 10011) kN mm^3 kN
CARICHI OMOGENIZZAZIONE	Momento statico o Altezza baric, sez, o Momento d'inerza ce Per carichi di lui. Coeff, di omogenizzata Momento statico o Altezza baric, sez, o Momento d'inerza ce Carichi interasse Peso proprio (pp) Permanente Accidentale Lineare perm Carico lineare de Verifica a SLE (a Premonta assegnal Previsto puntellame Carico fase costrut freccia iniziale	mog. (Som) m. % mog. (Som) m. % m. % mog. (Ee=50×1	1874259 170 31283716.22 Ec,iniz.): 13 6519.101618 1017529 156 26864965.65 Coeff y di SLU 1.3 1.5 1.5 1.5 1.5 kN/m 0 0.0	mm*3 mm mm*4 . mm*2 mm*3 mm mm*4 Coeff ψ di SLE 100 100 100 100 KN/m mm	LU SEZ. ACCIAIO+CLS YERIFICHE	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica flessione SLU sezione mezzer (Metodo elastico secondo DM14-01-0: Incremento di carico risp. a fase costrutt∆q Incremento di momento Δ M Ed Tensioni estradosso sez. cls (σc)	102.0 V Ed 0 102.0 V Ed ia 8 \$4.3.4.2. 8.81 19 -3.5 3.79 112.9 1.62 irme CNR 18.5 152929 21.06 39.32	kNm < 50% V c,Rd < 50% V c,Rd 1.1) KNI/m kNm NI/mm*2 NI/mm*2 UNI 10011) kN mm*3 kN
CARICHI OMOGENIZZAZIONE	Momento statico o Altezza baric, sez, o Momento d'inerza ce Per carichi di lui. Coeff, di omogenizzata Momento statico o Altezza baric, sez, o Momento d'inerza ce Carichi interasse Peso proprio (pp) Permanente Accidentale Lineare perm Carico lineare de Yerifica a SLE (ce Premonta assegnal Previsto puntellame Carico fase costrut freccia iniziale Carico Permanente	mog. (Som) m. % mog. (Som) m. % mog. (Som) m. % mog. (Ee=50×1	1874259 170 31283716.22 Ec,iniz.): 13 6519.101618 1017529 156 26864965.65 Coeff y di SLU 1.3 1.5 1.5 1.5 1.5 kN/m 0 3.80	mm^3 mm mm^4	LU SEZ. ACCIAIO+CLS YERIFICHE	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica flessione SLU sezione mezzer (Metodo elastico secondo DM14-01-0: Incremento di carico risp. a fase costrutt∆q Incremento di momento Δ M Ed Tensioni estradosso sez. cls (σc)	102.0 V Ed 0 102.0 V Ed ia 8 \$4.3.4.2. 8.81 19 -3.5 3.79 112.9 1.62 irme CNR 18.5 152929 21.06 39.32	kNm < 50% V c,Rd < 50% V c,Rd 1.1) KNI/m kNm n/mm^2 N/mm^2 UNI 10011) kN mm^3 kN
CARICHI OMOGENIZZAZIONE	Momento statico o Altezza baric, sez, o Momento d'inerza ce Per carichi di lui. Coeff, di omogenizzata Momento statico o Altezza baric, sez, o Momento d'inerza ce Carichi interasse Peso proprio (pp) Permanente Accidentale Lineare perm Carico lineare de Verifica a SLE (a Premonta assegnal Previsto puntellame Carico fase costrut freccia iniziale	mog. (Som) m. % mog. (Som) m. % mog. (Som) m. % mog. (Ee=50×1	1874259 170 31283716.22 Ec,iniz.): 13 6519.101618 1017529 156 26864965.65 Coeff y di SLU 1.3 1.5 1.5 1.5 1.5 kN/m 0 3.80	mm*3 mm mm*4 . mm*2 mm*3 mm mm*4 Coeff ψ di SLE 100 100 100 100 KN/m mm	LU SEZ. ACCIAIO+CLS YERIFICHE	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica flessione SLU sezione mezzer (Metodo elastico secondo DM14-01-0: Incremento di carico risp. a fase costrutt∆q Incremento di momento Δ M Ed Tensioni estradosso sez. cls (σc)	102.0 V Ed 0 102.0 V Ed ia 8 \$4.3.4.2. 8.81 19 -3.5 3.79 112.9 1.62 irme CNR 18.5 152929 21.06 39.32	kNm < 50% V c,Rd < 50% V c,Rd 1.1) KNI/m kNm n/mm^2 N/mm^2 UNI 10011) kN mm^3 kN
CARICHI OMOGENIZZAZIONE	Momento statico o Altezza baric, sez, o Momento d'inerza ce Per carichi di lui. Coeff, di omogenizzata Momento statico o Altezza baric, sez, o Momento d'inerza ce Carichi interasse Peso proprio (pp) Permanente Accidentale Lineare perm Carico lineare de Yerifica a SLE (ce Premonta assegnal Previsto puntellame Carico fase costrut freccia iniziale Carico Permanente	mog. (Som) m. % mog. (Som) m. % mog. (Som) m. % mog. (Ee=50×1	1874259 170 31283716.22 Ec,iniz.]: 13 6519.101618 1017529 156 26864965.65 Coeff y di SLU 1.3 1.5 1.5 1.5 1.5 kN/m 0 3.80 1.00	mm^3 mm mm^4	LU SEZ. ACCIAIO+CLS YERIFICHE	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica flessione SLU sezione mezzer (Metodo elastico secondo DM14-01-0: Incremento di carico risp. a fase costrutt∆q Incremento di momento Δ M Ed Tensioni estradosso sez. cls (σc)	102.0 V Ed 0 102.0 V Ed ia 8 \$4.3.4.2. 8.81 19 -3.5 3.79 112.9 1.62 irme CNR 18.5 152929 21.06 39.32	kNm < 50% V c,Rd < 50% V c,Rd 1.1) KNI/m kNm n/mm^2 N/mm^2 UNI 10011) kN mm^3 kN
Deformazioni CARICHI OMOGENIZZAZIONE	Momento statico o Altezza baric. sez. o Momento d'inerza c Per carichi di lur Coeff. di omogenizza Area omogenizzata Momento statico o Altezza baric. sez. o Momento d'inerza c Momento (pp) Permanente Accidentale Lineare perm Carico lineare d Verifica a SLE (c Premonta assegnal Previsto puntellame Carico fase costrut freccia iniziale Carico Permanente Carico accidentale	mog. (Som) m. x ₀ mog. (Som) m. x ₀ mogo termine (Ec=50×1 zazione (n=Es/Ec) (Aom) mog. (Som) m. x ₀ mogenizzato (Jom) 1.00	1874259 170 31283716.22 Ec,iniz.]: 13 6519.101618 1017529 156 26864965.65 Coeff y di SLU 1.3 1.5 1.5 1.5 1.5 kN/m 0.0 3.80 1.00 16.8	mm*3 mm mm*4 . mm*2 mm*3 mm mm*4 Coeff ψ di SLE 100 100 100 100 KN/m KN/m KN/m	LU SEZ. ACCIAIO+CLS YERIFICHE	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica flessione SLU sezione mezzer (Metodo elastico secondo DM14-01-0: Incremento di carico risp. a fase costrutt∆q Incremento di momento Δ M Ed Tensioni estradosso sez. cls (σc)	102.0 V Ed 0 102.0 V Ed ia 8 \$4.3.4.2. 8.81 19 -3.5 3.79 112.9 1.62 irme CNR 18.5 152929 21.06 39.32	kNm < 50% V c,Rd < 50% V c,Rd 1.1) KNI/m kNm n/mm^2 N/mm^2 UNI 10011) kN mm^3 kN
CARICHI OMOGENIZZAZIONE	Momento statico o Altezza baric. sez. o Momento d'inerza c. Per carichi di lur Coeff. di omogenizza Area omogenizzata Momento statico o Altezza baric. sez. o Momento d'inerza c. Momento (pp.) Permanente Accidentale Lineare perm. Carico lineare d. Merifica a SLE (c. Premonta assegnat Previsto puntellame Carico fase costrut freccia iniziale. Carico Permanente Carico accidentale i sammitotale = 1/	mog. (Som) m. % m. % mog. (Som) m. % mog termine (Ec=50×1 zazione (n=Es/Ec) (Aom) mog. (Som) m. % mog. (Som)	1874259 170 31283716.22 Ec,iniz.]: 13 6519.101618 1017529 156 26864965.65 Coeff 7 di SLU 1.3 1.5 1.5 1.5 kN/m 0 SI - 0.0 3.80 1.00 16.8 3.4	mm*3 mm mm*4	LU SEZ. ACCIAIO+CLS YERIFICHE	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica flessione SLU sezione mezzer (Metodo elastico secondo DM14-01-0: Incremento di carico risp. a fase costrutt∆q Incremento di momento Δ M Ed Tensioni estradosso sez. cls (σc)	102.0 V Ed 0 102.0 V Ed ia 8 \$4.3.4.2. 8.81 19 -3.5 3.79 112.9 1.62 irme CNR 18.5 152929 21.06 39.32	kNm < 50% V c,Rd < 50% V c,Rd 1.1) KNI/m kNm n/mm^2 N/mm^2 UNI 10011) kN mm^3 kN
Deformazioni CARICHI OMOGENIZZAZIONE	Momento statico o Altezza baric. sez. o Momento d'inerza co Per carichi di lui Coeff. di omogenizza Area omogenizzata Momento statico o Altezza baric. sez. o Momento d'inerza co Momento (pp) Permanente Accidentale Lineare perm Carico lineare di Yerifica a SLE (comenta assegnata Previsto puntellame Carico fase costrut freccia iniziale Carico Permanente Carico accidentale (comenta assegnata assegnata) Previsto puntellame Carico Permanente Carico accidentale (comenta assegnata asseg	mog. (Som) m. x ₀ mog. (Som) m. x ₀ mogo termine (Ec=50×1 tazione (n=Es/Ec) (Aom) mog. (Som) m. x ₀ mogenizzato (Jom) 1.00 m 0.00 kN/mq 3.80 kN/mq 1.00 kN/mq 0.00 kN/m i SLU tot = 8.81 deformazioni) ta al profilo tatal profilo tiva (soletta non collab.) 5 /384 = (lungo termine) = 250 L = 5 /384 =	1874259 170 31283716.22 Ec.iniz.): 13 6519.101618 1017529 156 26864965.65 Coeff Y di SLU 1.3 1.5 1.5 1.5 kN/m 0 SI - 0.0 3.80 1.00 16.8 3.4 12.0	mm*3 mm*4 . mm*2 mm*2 mm*3 mm mm*4 Coeff y di SLE 1.00 1.00 1.00 1.00	LU SEZ. ACCIAIO+CLS YERIFICHE	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica flessione SLU sezione mezzer (Metodo elastico secondo DM14-01-0: Incremento di carico risp. a fase costrutt∆q Incremento di momento Δ M Ed Tensioni estradosso sez. cls (σc)	102.0 V Ed 0 102.0 V Ed ia 8 \$4.3.4.2. 8.81 19 -3.5 3.79 112.9 1.62 irme CNR 18.5 152929 21.06 39.32	kNm < 50% V < 50% V 1.1) KN/m kNm N/mm*; N/mm*; UNI 100 kN mm*3 kN

Si riporta la verifica del solaio del sottotetto (copertura primo piano) che risulta utilizzabile quale cat. H

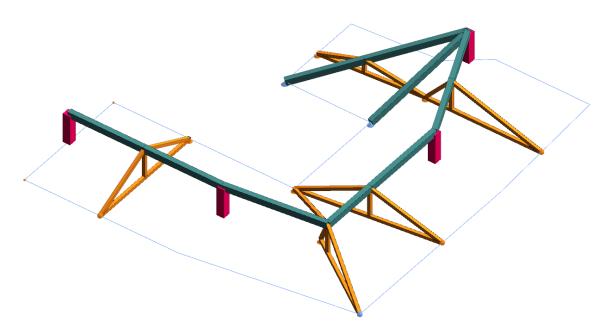
(sottotetto):

	RIFICA RINFOR	270 TRAVI IPN 2	200. sottotet	to				
	Codice sezione	1201 SEZIONE	: IPN 200	NORM		Coefficienti di sicurezza lato materiali:		
	altezza trave (h)			mm		ACCIAIO CARPENTERIA		
	larghezza ali (b)			mm		y M0 = Resistenza =	1.05	
	Spessore anima (tw)			mm		y M1 = Instabilità =	1.05	
	Spessore ala (tf)		_	mm		y M1 = Instabilità ponti =	1.10	
	Raggio di raccordo (r	r)		mm		y M2 = Resistenza sez, tese	1.25	
	Area (A)	',		mm^2		CALCESTRUZZO	1.20	
	Area taglio (A v)			mm^2		γ M0 = Resistenza =	1.50	
						1102121212	1.50	
	Peso proprio (pp)	07.5		N/m		ACCIAIO CONNETTORI (da c.a.) v M0 = Resistenza =	1.15	
	Momento d'Inerzia prii		19430000			γ M0 = Resistenza =	1.15	
	Modulo di resistenza '		194000					
	Modulo di resistenza p		221000			Tipo di acciaio carpenteria: ESISTENTI		
co.	raggio d'inerzia maggio		82.6			Tensione di snervamento car. f yk =		N/mmq
ACC-CLS	Momento d'Inerzia prii		1420000			Tensione di snerv. di calcolo f yd =	182.9	
Х	Modulo di resistenza a		28500			Modulo elastico normale (Ea) =	206000	
ŭ	Modulo di resistenza p		44600		-	Modulo elastico tangenziale (Ga) =		N/mmq
-51	raggio d'inerzia minore		22.4		A	Coeff. Dilatazione termica	0.000012	
2	Momento d'inerzia tor	rsionale (I tj	69200	mm"4	UTILIZZATI	Tipo di calcestruzzo: Rck		LECACLS
8	Calcestruzzo				7	Res. cilindrica caratt. fck		N/mmq
2	Spessore soletta (hc)		_	cm	Е	Coefficiente lungo term. acc	0.85	
COMPOSTA	Altezza di raccordo so		_	cm		Res, cilindrica di calcolo fod		N/mmq
8		ordo soletta-profilo (br)		cm	A	Modulo elasticità Ec		N/mmq
	Interasse travi acciaio		100		MATERIALI	Peso di volume calcestruzzo yols		N/mm^3
종	Largh eff. soletta (b efi		100	cm	ΙE	Tipo di acciaio connettori: B	450	
SEZIONE	Elementi Connette	ori: RETE ELI	ETTROSALD.		2	Tensione di snervamento car. f yk =	450	N/mmq
Ä	Diametro staffa		8	mm	М	Tensione di snerv. di calcolo f yd =	391.3	N/mmq
	Angolo staffa-piattaba	anda α	0	gradi				
GEOMETRIA	Passo longitudinale st	taffe	20	cm		Tensioni di SLU indotte nell'acciaio in f	fase di ge	tto
ш	Geometria trave	Lunghezza	5.05	Э	5	Carico SLU fase costrutt. (soletta non collab.) 0		KN/m
Σ	Presenza di piatti sald	ati alle ali	NO		É	M Ed fase costrutt. (soletta non collab.)	0.0	kNm
ᇜ	base		0	mm	5	Tensioni intradosso sez. acciaio (σa,i)	0.0	N/mm^2
•	spessore		0	mm	Œ	Tensioni estradosso sez. acciaio (σa,i)	0.0	N/mm^3
		rispetto all'acciaio			COSTRUTTIVA	Verifica flessione SLU sezione mezzeria	a	
N		re termine (Ec=Ec,i				Momento resistente elastico acciaio MRd	35.5	kNm
SEZ	Coeff, di omogenizzaz		6.8		SE	M Rd / M Ed =		
	~							
ш	Area omogenizzata (A	\om)	11646	mm^2	2	Verifica SLU taglio appoggio SX		
N	Area omogenizzata (A Momento statico om		11646 2308140		U FASE	Verifica SLU taglio appoggio SX V Ed appoggio fase costruttiva	0.0	kNm
ZIONE		og. (Som)	2308140		nis	Verifica SLU taglio appoggio SX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vo,Rd	0.0 148.0	
AZIONE	Momento statico om Altezza baric, sez. om. Momento d'inerza om	og. (Som) . % nogenizzato (Jom)	2308140 198 58447240.26	mm^3 mm	nis	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vo,Rd V Ed / V,c Rd =	148.0	
IZZAZIONE	Momento statico omi Altezza baric, sez, om. Momento d'inerza om Per carichi di lung	og. (Som) . % nogenizzato (Jom) jo termine (Ec=50%	2308140 198 58447240.26 Ec.iniz.) :	mm^3 mm mm^4	nis	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica SLU taglio appoggio DX	148.0 V Ed	kNm
NIZZAZIONE	Momento statico om Altezza baric, sez, om, Momento d'inerza om Per carichi di lung Coeff, di omogenizzaz	og. (Som) . % ₆ nogenizzato (Jom) jo termine (Ec=50% zione (n=Es/Ec)	2308140 198 58447240.26 Ec,iniz.) : 14	mm^3 mm mm^4	nis	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva	148.0 V Ed	kNm
GENIZZAZIONE	Momento statico om Altezza bario, sez. om. Momento d'inerza om Per carichi di lung Coeff. di omogenizzaz Area omogenizzata (A	og. (Som) . % nogenizzato (Jom) jo termine (Ec=50% zione (n=Es/Ec) Aom)	2308140 198 58447240.26 Ec,iniz.): 14 7248.130079	mm ³ mm mm ⁴	nis	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed / V,c Rd = Verifica SL Vaglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd	148.0 V Ed 0 148.0	kNm < 50% V c,Rd
10GENIZZAZIONE	Momento statico om Altezza bario, sez, om, Momento d'inerza om Per carichi di lung Coeff, di omogenizzaz Area omogenizzata (A Momento statico om	og. (Som) .8 ₄ rogenizzato (Jom) jo termine (Ec=50% ione (n=E <i>sl</i> Ec) Aom) og. (Som)	2308140 198 58447240.26 Ec.iniz.): 14 7248.130079 1296570	mm ³ mm mm ⁴ mm ² mm ³	VERIFICHE SLU FA	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc.Rd V Ed / V.c. Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc.Rd V Ed / V.c. Rd =	148.0 V Ed 0 148.0 V Ed	kNm
OMOGENIZZAZIONE	Momento statico om Altezza baric. sez. om. Momento d'inerza om Per carichi di lung Coeff. di omogenizzaz Area omogenizzata (A Momento statico om Altezza baric. sez. om.	og. (Som) .%a .%a nogenizzato (Jom) po termine (Ec=50% zione (n=Es/Ec) Aom) og. (Som) .%a	2308140 198 58447240.26 Ec.iniz.): 14 7248.130079 1296570 179	mm^3 mm mm^4 mm^2 mm^3 mm	nis	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed / V,c Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed / V,c Rd = Verifica flessione SLU sezione mezzeri.	148.0 V Ed 0 148.0 V Ed	kNm < 50% V c,Rd < 50% V c,Rd
OMOGENIZZAZIONE	Momento statico om Altezza bario, sez, om, Momento d'inerza om Per carichi di lung Coeff, di omogenizzaz Area omogenizzata (A Momento statico om	og. (Som) .%a .%a nogenizzato (Jom) po termine (Ec=50% zione (n=Es/Ec) Aom) og. (Som) .%a	2308140 198 58447240.26 Ec.iniz.): 14 7248.130079 1296570	mm^3 mm mm^4 mm^2 mm^3 mm	VERIFICHE SLU	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica flessione SLU sezione mezzeri. (Metodo elastico secondo DM14-01-08	148.0 VEd 0 148.0 VEd a \$4.3.4.2.1	kNm < 50% V c,Rd < 50% V c,Rd
OMOGENIZZAZIONE	Momento statico om Altezza bario, sez, om, Momento d'inerza om Per carichi di lung Coeff, di omogenizzata (A Momento statico om Altezza bario, sez, om, Momento d'inerza om	og. (Som) .%a .%a nogenizzato (Jom) po termine (Ec=50% zione (n=Es/Ec) Aom) og. (Som) .%a	2308140 198 58447240.26 Ec,iniz.): 14 7248.130079 1296570 179 49975726.76	mm ³ mm mm ⁴ mm ² mm ³ mm	VERIFICHE SLU	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica flessione SLU sezione mezzeri (Metodo elastico secondo DM14-01-08 Incremento di carico risp. a fase costrutt∆q	148.0 VEd 0 148.0 VEd a \$4.3.4.2.1	kNm < 50% V c,Rd < 50% V c,Rd .11) KN/m
OMOGENIZZAZIONE	Momento statico om Altezza bario, sez. om. Momento d'inerza om Per carichi di lung Coeff. di omogenizzata (A Momento statico om Altezza bario, sez. om. Momento d'inerza om	og. (Som) .%a .%a nogenizzato (Jom) po termine (Ec=50% zione (n=Es/Ec) Aom) og. (Som) .%a	2308140 198 58447240.26 Ec.iniz.): 14 7248.130079 1296570 179 49975726.76	mm^3 mm mm^4 mm^2 mm^3 mm	VERIFICHE SLU	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica flessione SLU sezione mezzeria (Metodo elastico secondo DM14-01-08 Incremento di carico risp. a fase costrutt∆q Incremento di momento ∆ M Ed	148.0 V Ed 0 148.0 V Ed a \$4.3.4.2.1 8.90 28	kNm < 50% V c,Rd < 50% V c,Rd < 50% V c,Rd L1) KN/m kNm
OMOGENIZZAZIONE	Momento statico om Altezza bario, sez. om. Momento d'inerza om Per carichi di lung Coeff, di omogenizzaz Area omogenizzata (A Momento statico om Altezza bario, sez. om. Momento d'inerza om Carichi interasse	og. (Som) % ogenizzato (Jom) po termine (Ec=50% tione (n=Es/Ec) og. (Som) % nogenizzato (Jom) 1.00 m	2308140 198 58447240.26 Ec,iniz.): 14 7248.130079 1296570 179 49975726.76 Coeff 7 di SLU	mm°3 mm mm°4 . mm°2 mm°3 mm amm°4 Coeff di SLE	VERIFICHE SLU	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I Vc, Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V.c, Rd = Verifica flessione SLU sezione mezzeri (Metodo elastico secondo DM14-01-08 Incremento di carico risp, a fase costrutt∆q Incremento di momento ∆ M Ed Tensioni estradosso sez. cls (σc)	148.0 V Ed 0 148.0 V Ed a \$4.3.4.2. 8.90 28 -3.4	kNm < 50% V c,Rd < 50% V c,Rd .11) KN/m
OMOGENIZZAZIONE	Momento statico om Altezza bario, sez. om. Momento d'inezza om Per carichi di lung Coeff. di omogenizzata (A Momento statico om Altezza bario, sez. om. Momento d'inezza om Carichi interasse Peso proprio (pp)	og. (Som) % ogenizzato (Jom) po termine (Ec=50% zione (n=Es/Ec) Aom) og. (Som) % nogenizzato (Jom) 1.00 m 0.00 kN/mq	2308140 198 58447240.26 Ec,iniz.): 14 7248.130079 1296570 179 49975726.76 Coeff y di SLU	mm°3 mm mm°4 . mm°2 mm°3 mm amm°4 Coeff di SLE 1.00	VERIFICHE SLU	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica flessione SLU sezione mezzeri (Metodo elastico secondo DM14-01-08 Incremento di carico risp. a fase costrutt∆q Incremento di momento ∆ MEd Tensioni estradosso sez. cls (cc) fcdl/oc	148.0 VEd 0 148.0 VEd a \$4.3.4.2. 8.90 28 -3.4 3.49	kNm < 50% V c,Rd < 50% V c,Rd .1) KN/m kN/m kN/m
	Momento statico om Altezza bario, sez. om. Momento d'inezza om Per carichi di lung Coeff. di omogenizzata (A Momento statico om Altezza bario, sez. om. Momento d'inezza om Carichi interasse Peso proprio (pp) Permanente	og. (Som) .% .% .% .% .% .% .% .% .% .% .% .% .%	2308140 198 58447240.26 Ec,iniz.): 14 7248.130079 1296570 179 49975726.76 Coeff y di SLU	mm*3 mm mm*4	ACCIAIO+CLS VERIFICHE SLU	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica flessione SLU sezione mezzeri (Metodo elastico secondo DM14-01-08 Incremento di carico risp. a fase costrutt∆q Incremento di momento ∆ M Ed Tensioni estradosso sez. cls (σc) fcdl σ c Tensioni intradosso sez. acciaio (σs)	148.0 V Ed 0 148.0 V Ed a \$4.3.4.2.1 8.90 28 -3.4 3.49 101.5	kNm < 50% V c,Rd < 50% V c,Rd < 50% V c,Rd L1) KN/m kNm
	Momento statico om Altezza bario, sez. om. Momento d'inezza om Per carichi di lung Coeff. di omogenizzata (A Momento statico om Altezza bario, sez. om. Momento d'inezza om Carichi interasse Peso proprio (pp) Permanente Accidentale	og. (Som) .% .% .% ogenizzato (Jom) po termine (Ec=50% cione (n=Es/Ec) Aom) .% a nogenizzato (Jom) 1.00 m 0.00 kN/mq 3.80 kN/mq	2308140 198 58447240.26 Ee,iniz.): 14 7248.130079 1296570 179 49975726.76 Coeff y di SLU 1.3 1.5	mm*3 mm mm*4 .mm*2 mm*3 mm mm*4 di SLE 1.00 1.00	ACCIAIO+CLS VERIFICHE SLU	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica flessione SLU sezione mezzeri (Metodo elastico secondo DM14-01-08 Incremento di carico risp. a fase costrutt∆q Incremento di momento ∆ MEd Tensioni estradosso sez. cls (cc) fcdl/oc	148.0 VEd 0 148.0 VEd a \$4.3.4.2. 8.90 28 -3.4 3.49	kNm < 50% V c,Rd < 50% V c,Rd .1) KN/m kN/m kN/m
	Momento statico om Altezza bario, sez. om. Momento d'inezza om Per carichi di lung Coeff. di omogenizzata (A Momento statico om Altezza bario, sez. om. Momento d'inezza om Carichi interasse Peso proprio (pp) Permanente	og. (Som) .% .% .% .% .% .% .% .% .% .% .% .% .%	2308140 198 58447240.26 Ec,iniz.): 14 7248.130079 1296570 179 49975726.76 Coeff y di SLU	mm*3 mm mm*4	ACCIAIO+CLS VERIFICHE SLU	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica flessione SLU sezione mezzeri. (Metodo elastico secondo DM14-01-08 Incremento di carico risp. a fase costrutt∆q Incremento di momento ∆ M Ed Tensioni estradosso sez. cls (σc) fedioc Tensioni intradosso sez. acciaio (σs)	148.0 V Ed 0 148.0 V Ed a \$4.3.4.2. 8.90 28 -3.4 3.49 101.5 1.80	kNm < 50% V c,Rd < 50% V c,Rd 1.1) KN/m kN/m N/mm*2 N/mm*2
	Momento statico om Altezza bario, sez. om. Momento d'inerza om Per carichi di lung Coeff, di omogenizzaz (A Momento statico om Altezza bario, sez. om. Momento d'inerza om Carichi interasse Peso proprio (pp) Permanente Accidentale Lineare perm	og. (Som) % ogenizzato (Jom) po termine (Ec=50% ione (n=Es/Ec) Aom) og. (Som) % nogenizzato (Jom) 1.00 m 0.00 kN/mq 3.80 kN/mq 1.00 kN/mq 0.00 kN/m	2308140 198 58447240.26 Ec,iniz.): 14 7248.130079 1296570 179 49975726.76 Coeff y di SLU 1.3 1.5 1.5	mm*3 mm mm*4 .mm*2 mm*3 mm mm*4 di SLE 1.00 1.00	EZ. ACCIAIO+CLS VERIFICHE SLU	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I Vc, Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V.c, Rd = Verifica flessione SLU sezione mezzeri (Metodo elastico secondo DM14-01-08 Incremento di carico risp, a fase costrutt∆q Incremento di momento Δ M Ed Tensioni estradosso sez. cls (σc) fcdlσc Tensioni intradosso sez. acciaio (σs) fydlσs Verifica SLU connettori a taglio (rif.nor	148.0 V Ed 0 148.0 V Ed a \$4.3.4.2. 8.90 28 -3.4 3.49 101.5 1.80 me CNB	KNm < 50% V c,Rd < 50% V c,Rd L1) KN/m KN/m N/mm^2 N/mm^2
CARICHI OMOGENIZZAZIONE	Momento statico om Altezza bario, sez. om. Momento d'inerza om Per carichi di lung Coeff, di omogenizzaz Area omogenizzaz (A Momento statico om Altezza bario, sez. om. Momento d'inerza om Carichi interasse Peso proprio (pp) Permanente Accidentale Lineare perm	og. (Som) % ogenizzato (Jom) po termine (Ec=50% ione (n=Es/Ec) og. (Som) % ogenizzato (Jom) 1.00 m 0.00 kN/mq 3.80 kN/mq 1.00 kN/mq 6.00 kN/m	2308140 198 58447240.26 Ee,iniz.): 14 7248.130079 1296570 179 49975726.76 Coeff y di SLU 1.3 1.5	mm*3 mm mm*4 .mm*2 mm*3 mm mm*4 di SLE 1.00 1.00	SLU SEZ. ACCIAIO+CLS VERIFICHE SLU	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I Vc, Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V.c, Rd = Verifica flessione SLU sezione mezzeri (Metodo elastico secondo DM14-01-08 Incremento di carico risp, a fase costrutt∆q Incremento di momento Δ M Ed Tensioni estradosso sez. cls (σc) fcdlσc Tensioni intradosso sez. acciaio (σs) fydlσs Verifica SLU connettori a taglio (rif.nor Δ V Ed max (appoggi)	148.0 V Ed 0 148.0 V Ed a §4.3.4.2. 8.90 28 -3.4 3.43 101.5 1.80	kNm < 50% V o,Rd < 50% V o,Rd L1) KN/m kNm N/mm^2 N/mm^2 UNI 10011) kN
	Momento statico om Altezza bario, sez. om. Momento d'inezza om Per carichi di lung Coeff. di omogenizzata (A Momento statico om Altezza bario, sez. om. Momento d'inezza om Carichi interasse Peso proprio (pp) Permanente Accidentale Lineare perm Carico lineare di S Verifica a SLE (de	og. (Som) -% -% -% -% -% -% -% -% -% -% -% -% -%	2308140 198 58447240.26 Ec,iniz.]: 14 7248.130079 1296570 179 49975726.76 Coeff y di SLU 1.3 1.5 1.5 1.5	mm*3 mm mm*4 . mm*2 mm*3 mm mm*4 Coeff di SLE 1.00 1.00 1.00 1.00	SLU SEZ. ACCIAIO+CLS VERIFICHE SLU	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica flessione SLU sezione mezzeri. (Metodo elastico secondo DM14-01-08 Incremento di carico risp. a fase costrutt∆q Incremento di momento Δ M Ed Tensioni estradosso sez. cls (σc) fcdl/σc Tensioni intradosso sez. acciaio (σs) fydl/σs Verifica SLU connettori a taglio (rif.nor Δ V Ed max (appoggi) Momento statico sezione omogenizzata (Sy)	148.0 V Ed 0 148.0 V Ed a \$4.3.4.2. 8.90 28 -3.4 3.49 101.5 1.80 IMPERIOR CMR 22.5 224818	kNm < 50% V e,Rd < 50% V e,Rd i.1) KN/m kNm N/mm^2 N/mm^2 UNI 10011) kN mm^3
	Momento statico om Altezza bario, sez. om. Momento d'ineza om Per carichi di lung Coeff. di omogenizzata (A Momento statico om Altezza bario, sez. om. Momento d'ineza om Carichi interasse Peso proprio (pp) Permanente Accidentale Lineare perm Carico lineare di S Verifica a SLE (de Premonta assegnata:	og. (Som) .% .% .% .% .% .% .% .% .% .% .% .% .%	2308140 198 58447240.26 Ec,iniz.]: 14 7248.130079 1296570 179 49975726.76 Coeff y di SLU 1.3 1.5 1.5 1.5 1.5	mm*3 mm mm*4 .mm*2 mm*3 mm mm*4 di SLE 1.00 1.00	SLU SEZ. ACCIAIO+CLS VERIFICHE SLU	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica flessione SLU sezione mezzeri. (Metodo elastico secondo DM14-01-08 Incremento di carico risp. a fase costrutt∆q Incremento di momento Δ M Ed Tensioni estradosso sez. cls (cc) fcdl/Cc Tensioni intradosso sez. acciaio (σs) fydl/Cs Verifica SLU connettori a taglio (rif.nor Δ V Ed max (appoggi) Momento statico sezione omogenizzata (Sy) Taglio di progetto per ogni connettore (P Ed)	148.0 V Ed 0 148.0 V Ed a \$4.3.4.2. 8,90 28 3,44 3.49 101.5 1.80 me CNR 22.5 224818 20.21	kNm < 50% V e,Rd < 50% V e,Rd .1) KNVm kNm nVmm*2 NVmm*2 UNI 10011) kN mm*3 kN
	Momento statico om Altezza bario, sez. om. Momento d'ineza om Per carichi di lung Coeff. di omogenizzata (A Momento statico om Altezza bario, sez. om. Momento statico om Momento d'ineza om Carichi interasse Peso proprio (pp) Permanente Accidentale Lineare perm Carico lineare di S Verifica a SLE (de Premonta assegnata :	og. (Som) .% .% .% .% .% .% .% .% .% .% .% .% .%	2308140 198 58447240.26 Ec,iniz.]: 14 7248.130079 1296570 179 49975726.76 Coeff y di SLU 1.3 1.5 1.5 1.5 1.5 1.5	mm*3 mm mm*4 . mm*2 mm*3 mm mm*4 Coeff \(\psi \) di SLE 1.00 1.00 1.00 1.00 mm	SLU SEZ. ACCIAIO+CLS VERIFICHE SLU	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica flessione SLU sezione mezzeri. (Metodo elastico secondo DM14-01-08 Incremento di carico risp. a fase costrutt∆q Incremento di momento Δ M Ed Tensioni estradosso sez. cls (cc) fcdl/Cc Tensioni intradosso sez. acciaio (σs) fydl/σs Verifica SLU connettori a taglio (rif.nor Δ V Ed max (appoggi) Momento statico sezione omogenizzata (Sy) Taglio di progetto per ogni connettore (P Ed) Resistenza di progetto connettore (P Rd)	148.0 V Ed 0 148.0 VEd a \$4.3.4.2. 8.90 28 3.44 3.49 101.5 1.80 me CNR 22.5 224818 20.21 39.32	kNm < 50% V e,Rd < 50% V e,Rd .1) KNVm kNm nVmm*2 NVmm*2 UNI 10011) kN mm*3 kN
CARICHI	Momento statico om Altezza bario, sez. om. Momento d'ineza om Per carichi di lung Coeff. di omogenizzata (A Momento statico om Altezza bario, sez. om. Momento statico om Momento d'ineza om Carichi interasse Peso proprio (pp) Permanente Accidentale Lineare perm Carico lineare di S Verifica a SLE (de Premonta assegnata :	og. (Som) .% .% .% .% .% .% .% .% .% .% .% .% .%	2308140 198 58447240.26 Ec,iniz.]: 14 7248.130079 1296570 179 49975726.76 Coeff y di SLU 1.3 1.5 1.5 1.5 1.5	mm*3 mm mm*4 . mm*2 mm*3 mm mm*4 Coeff di SLE 1.00 1.00 1.00 1.00	ACCIAIO+CLS VERIFICHE SLU	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica flessione SLU sezione mezzeri. (Metodo elastico secondo DM14-01-08 Incremento di carico risp. a fase costrutt∆q Incremento di momento Δ M Ed Tensioni estradosso sez. cls (cc) fcdl/Cc Tensioni intradosso sez. acciaio (σs) fydl/Cs Verifica SLU connettori a taglio (rif.nor Δ V Ed max (appoggi) Momento statico sezione omogenizzata (Sy) Taglio di progetto per ogni connettore (P Ed)	148.0 V Ed 0 148.0 V Ed a \$4.3.4.2. 8,90 28 3,44 3.49 101.5 1.80 me CNR 22.5 224818 20.21	kNm < 50% V e,Rd < 50% V e,Rd .1) KNVm kNm nVmm*2 NVmm*2 UNI 10011) kN mm*3 kN
CARICHI	Momento statico om Altezza bario, sez. om. Momento d'ineza om Per carichi di lung Coeff. di omogenizzata (A Momento statico om Altezza bario, sez. om. Momento statico om Momento d'ineza om Carichi interasse Peso proprio (pp) Permanente Accidentale Lineare perm Carico lineare di S Verifica a SLE (de Premonta assegnata :	og. (Som) .% .% .% .% .% .% .% .% .% .% .% .% .%	2308140 198 58447240.26 Ec,iniz.]: 14 7248.130079 1296570 179 49975726.76 Coeff y di SLU 1.3 1.5 1.5 1.5 1.5 kN/m	mm*3 mm mm*4 . mm*2 mm*3 mm mm*4 Coeff \(\psi \) di SLE 1.00 1.00 1.00 1.00 mm	SLU SEZ. ACCIAIO+CLS VERIFICHE SLU	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica flessione SLU sezione mezzeri. (Metodo elastico secondo DM14-01-08 Incremento di carico risp. a fase costrutt∆q Incremento di momento Δ M Ed Tensioni estradosso sez. cls (cc) fcdl/Cc Tensioni intradosso sez. acciaio (σs) fydl/σs Verifica SLU connettori a taglio (rif.nor Δ V Ed max (appoggi) Momento statico sezione omogenizzata (Sy) Taglio di progetto per ogni connettore (P Ed) Resistenza di progetto connettore (P Rd)	148.0 V Ed 0 148.0 VEd a \$4.3.4.2. 8.90 28 3.44 3.49 101.5 1.80 me CNR 22.5 224818 20.21 39.32	kNm < 50% V e,Rd < 50% V e,Rd .1) KNVm kNm nVmm*2 NVmm*2 UNI 10011) kN mm*3 kN
CARICHI	Momento statico om Altezza bario, sez. om. Momento d'inezza om Per carichi di lung Coeff. di omogenizzata (A Momento statico om Altezza bario, sez. om. Momento statico om Momento d'inezza om Carichi interasse Peso proprio (pp) Permanente Accidentale Lineare perm Carico lineare di S Verifica a SLE (de Premonta assegnata : Previsto puntellament Carico fase costruttiv freccia iniziale	og. (Som) .% .% .% .% .% .% .% .% .% .% .% .% .%	2308140 198 58447240.26 Ec,iniz.]: 14 7248.130079 1296570 179 49975726.76 Coeff y di SLU 1.3 1.5 1.5 1.5 1.5 1.5 1.5 1.5 0.0	mm*3 mm *4 . mm*2 mm*3 mm mm*4 Coeff \$\sigma\$ 1.00 1.00 1.00 1.00 KN/m mm	SLU SEZ. ACCIAIO+CLS VERIFICHE SLU	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica flessione SLU sezione mezzeri. (Metodo elastico secondo DM14-01-08 Incremento di carico risp. a fase costrutt∆q Incremento di momento Δ M Ed Tensioni estradosso sez. cls (cc) fcdl/Cc Tensioni intradosso sez. acciaio (σs) fydl/σs Verifica SLU connettori a taglio (rif.nor Δ V Ed max (appoggi) Momento statico sezione omogenizzata (Sy) Taglio di progetto per ogni connettore (P Ed) Resistenza di progetto connettore (P Rd)	148.0 V Ed 0 148.0 VEd a \$4.3.4.2. 8.90 28 3.44 3.49 101.5 1.80 me CNR 22.5 224818 20.21 39.32	kNm < 50% V e,Rd < 50% V e,Rd .1) KNVm kNm nVmm*2 NVmm*2 UNI 10011) kN mm*3 kN
CARICHI	Momento statico om Altezza bario, sez. om. Momento d'inezza om Per carichi di lung Coeff. di omogenizzata (A Momento statico om Altezza bario, sez. om. Momento statico om Momento d'inezza om Carichi interasse Peso proprio (pp) Permanente Accidentale Lineare perm Carico lineare di S Verifica a SLE (de Premonta assegnata : Previsto puntellament Carico fase costruttiv freccia iniziale Carico Permanente (li	og. (Som) .% .% .% .% .% .% .% .% .% .% .% .% .%	2308140 198 58447240.26 Ec,iniz.]: 14 7248.130079 1296570 179 49975726.76 Coeff y di SLU 1.3 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	mm^3 mm mm^4 . mm^22 mm^3 mm mm^4 Coeff 100 100 100 100 KN/m mm KN/m	SLU SEZ. ACCIAIO+CLS VERIFICHE SLU	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica flessione SLU sezione mezzeri. (Metodo elastico secondo DM14-01-08 Incremento di carico risp. a fase costrutt∆q Incremento di momento Δ M Ed Tensioni estradosso sez. cls (cc) fcdl/Cc Tensioni intradosso sez. acciaio (σs) fydl/σs Verifica SLU connettori a taglio (rif.nor Δ V Ed max (appoggi) Momento statico sezione omogenizzata (Sy) Taglio di progetto per ogni connettore (P Ed) Resistenza di progetto connettore (P Rd)	148.0 V Ed 0 148.0 VEd a \$4.3.4.2. 8.90 28 3.44 3.49 101.5 1.80 me CNR 22.5 224818 20.21 39.32	kNm < 50% V e,Rd < 50% V e,Rd .1) KNVm kNm nVmm*2 NVmm*2 UNI 10011) kN mm*3 kN
CARICHI	Momento statico om Altezza bario, sez. om. Momento d'inerza om Per carichi di lung Coeff. di omogenizzata (A Momento statico om Altezza bario, sez. om. Momento statico om Momento d'inerza om Carichi interasse Peso proprio (pp) Permanente Accidentale Lineare perm Carico lineare di S Verifica a SLE (de Premonta assegnata Previsto puntellament Carico fase costruttiv freccia iniziale Carico Permanente (It Carico accidentale (br.)	og. (Som) .% .% .% .% .% .% .% .% .% .% .% .% .%	2308140 198 58447240.26 Ec,iniz.]: 14 7248.130079 1296570 179 49975726.76 Coeff y di SLU 1.3 1.5 1.5 1.5 1.5 1.5 1.5 0.0 3.80 1.00	mm*3 mm *4 . mm*2 mm*3 mm mm*4 Coeff \$\psi\$ 1.00 1.00 1.00 1.00 KN/m KN/m KN/m KN/m	SLU SEZ. ACCIAIO+CLS VERIFICHE SLU	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica flessione SLU sezione mezzeri. (Metodo elastico secondo DM14-01-08 Incremento di carico risp. a fase costrutt∆q Incremento di momento Δ M Ed Tensioni estradosso sez. cls (cc) fcdl/Cc Tensioni intradosso sez. acciaio (σs) fydl/σs Verifica SLU connettori a taglio (rif.nor Δ V Ed max (appoggi) Momento statico sezione omogenizzata (Sy) Taglio di progetto per ogni connettore (P Ed) Resistenza di progetto connettore (P Rd)	148.0 V Ed 0 148.0 VEd a \$4.3.4.2. 8.90 28 3.44 3.49 101.5 1.80 me CNR 22.5 224818 20.21 39.32	kNm < 50% V e,Rd < 50% V e,Rd .1) KNVm kNm nVmm*2 NVmm*2 UNI 10011) kN mm*3 kN
CARICHI	Momento statico om Altezza bario, sez. om. Momento d'inezza om Per carichi di lung Coeff. di omogenizzata (A Momento statico om Altezza bario, sez. om. Momento statico om Momento d'inezza om Carichi interasse Peso proprio (pp) Permanente Accidentale Lineare perm Carico lineare di S Verifica a SLE (de Premonta assegnata : Previsto puntellament Carico fase costruttiv freccia iniziale Carico Permanente (li	og. (Som) .% .% .% .% .% .% .% .% .% .% .% .% .%	2308140 198 58447240.26 Ec,iniz.]: 14 7248.130079 1296570 179 49975726.76 Coeff y di SLU 1.3 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	mm*3 mm *4 . mm*2 mm*3 mm mm*4 Coeff \$\psi\$ 1.00 1.00 1.00 1.00 KN/m KN/m KN/m KN/m	SLU SEZ. ACCIAIO+CLS VERIFICHE SLU	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica flessione SLU sezione mezzeri. (Metodo elastico secondo DM14-01-08 Incremento di carico risp. a fase costrutt∆q Incremento di momento Δ M Ed Tensioni estradosso sez. cls (cc) fcdl/Cc Tensioni intradosso sez. acciaio (σs) fydl/σs Verifica SLU connettori a taglio (rif.nor Δ V Ed max (appoggi) Momento statico sezione omogenizzata (Sy) Taglio di progetto per ogni connettore (P Ed) Resistenza di progetto connettore (P Rd)	148.0 V Ed 0 148.0 VEd a \$4.3.4.2. 8.90 28 3.44 3.49 101.5 1.80 me CNR 22.5 224818 20.21 39.32	kNm < 50% V e,Rd < 50% V e,Rd .1) KNVm kNm nVmm*2 UNI 10011) kN mm*3 kN
Deformazioni CARICHI	Momento statico om Altezza bario, sez. om. Momento d'inerza om Per carichi di lung Coeff. di omogenizzata (A Momento statico om Altezza bario, sez. om. Momento statico om Momento d'inerza om Carichi interasse Peso proprio (pp) Permanente Accidentale Lineare perm Carico lineare di S Verifica a SLE (de Premonta assegnata Previsto puntellament Carico fase costruttiv freccia iniziale Carico Permanente (It Carico accidentale (br.)	og. (Som) .% .% .% .% .% .% .% .% .% .% .% .% .%	2308140 198 58447240.26 Ec,iniz.]: 14 7248.130079 1296570 179 49975726.76 Coeff y di SLU 1.3 1.5 1.5 1.5 1.5 2.1 kN/m 0 SI - 0.0 3.80 1.00 20.2	mm*3 mm *4 . mm*2 mm*3 mm mm*4 Coeff \$\psi\$ 1.00 1.00 1.00 1.00 KN/m KN/m KN/m KN/m	SLU SEZ. ACCIAIO+CLS VERIFICHE SLU	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica flessione SLU sezione mezzeri. (Metodo elastico secondo DM14-01-08 Incremento di carico risp. a fase costrutt∆q Incremento di momento Δ M Ed Tensioni estradosso sez. cls (cc) fcdl/Cc Tensioni intradosso sez. acciaio (σs) fydl/σs Verifica SLU connettori a taglio (rif.nor Δ V Ed max (appoggi) Momento statico sezione omogenizzata (Sy) Taglio di progetto per ogni connettore (P Ed) Resistenza di progetto connettore (P Rd)	148.0 V Ed 0 148.0 VEd a \$4.3.4.2. 8.90 28 3.44 3.49 101.5 1.80 me CNR 22.5 224818 20.21 39.32	kNm < 50% V e,Rd < 50% V e,Rd .1) KNVm kNm nVmm*2 UNI 10011) kN mm*3 kN
L.E. Deformazioni CARICHI	Momento statico om Altezza bario, sez. om. Momento d'inerza om Per carichi di lung Coeff, di omogenizzata (A Momento statico om Altezza bario, sez. om. Momento d'inerza om Altezza bario, sez. om. Momento d'inerza om Carichi interasse Peso proprio (pp) Permanente Accidentale Lineare perm Carico lineare di S Verifica a SLE (de Premonta assegnata. Previsto puntellament Carico fase costruttiv freccia iniziale Carico Permanente (lu Carico accidentale (br. S amm totale = 1/	og. (Som) .% ogenizzato (Jom) po termine (Ec=50% cione (n=Es/Ec) Aom) og. (Som) .% ogenizzato (Jom) 1.00 m 0.00 kN/mq 3.80 kN/mq 1.00 kN/mq 6.00 kN/mq 5.LU tot = 8.90 formazioni) al profilo to fase getto? ta (soletta non collab.) 5 /384 = ungo termine)= reve termine) = 250 L =	2308140 198 58447240.26 Ec,iniz.]: 14 7248.130079 1296570 179 49975726.76 Coeff y di SLU 1.3 1.5 1.5 1.5 1.5 kN/m 0 3.80 1.00 20.2 3.8	mm*3 mm mm*4 . mm*2 mm*3 mm mm*4 Coeff \$\psi\$ 1.00 1.00 1.00 1.00 KN/m mm KN/m KN/m mm	SLU SEZ. ACCIAIO+CLS VERIFICHE SLU	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica flessione SLU sezione mezzeri. (Metodo elastico secondo DM14-01-08 Incremento di carico risp. a fase costrutt∆q Incremento di momento Δ M Ed Tensioni estradosso sez. cls (cc) fcdl/Cc Tensioni intradosso sez. acciaio (σs) fydl/σs Verifica SLU connettori a taglio (rif.nor Δ V Ed max (appoggi) Momento statico sezione omogenizzata (Sy) Taglio di progetto per ogni connettore (P Ed) Resistenza di progetto connettore (P Rd)	148.0 V Ed 0 148.0 VEd a \$4.3.4.2. 8.90 28 3.44 3.49 101.5 1.80 me CNR 22.5 224818 20.21 39.32	kNm < 50% V e,Rd < 50% V e,Rd .1) KNVm kNm nVmm*2 UNI 10011) kN mm*3 kN
Deformazioni CARICHI	Momento statico om Altezza bario, sez. om. Momento d'inerza om Per carichi di lung Coeff, di omogenizzaz Area omogenizzaz (Area omogenizzaz (Area omogenizzaz om Altezza bario, sez. om. Momento d'inerza om Carichi interasse Peso proprio (pp) Permanente Accidentale Lineare perm Carico lineare di Serifica a SLE (de Premonta assegnata : Previsto puntellament Carico Permanente (Na Carico Permanente (Na Carico Permanente (Na Carico Permanente (Na Carico accidentale (Dra di Carico a	og. (Som) -% -% -% -% -% -% -% -% -% -% -% -% -%	2308140 198 58447240.26 Ec,iniz.]: 14 7248.130079 1296570 179 49975726.76 Coeff Y di SLU 1.3 1.5 1.5 1.5 kN/m 0 SI - 0.0 3.80 1.00 20.2 3.8 14.4	mm"3 mm"4 . mm"2 mm"3 mm mm"4 Coeff v di SLE 1.00 1.00 1.00 1.00 KNi/m mm KNi/m mm KNi/m mm	SLU SEZ. ACCIAIO+CLS VERIFICHE SLU	V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica SLU taglio appoggio DX V Ed appoggio fase costruttiva Taglio resistente solo acciaio Vc,Rd V Ed I V,c Rd = Verifica flessione SLU sezione mezzeri. (Metodo elastico secondo DM14-01-08 Incremento di carico risp. a fase costrutt∆q Incremento di momento Δ M Ed Tensioni estradosso sez. cls (cc) fcdl/Cc Tensioni intradosso sez. acciaio (σs) fydl/σs Verifica SLU connettori a taglio (rif.nor Δ V Ed max (appoggi) Momento statico sezione omogenizzata (Sy) Taglio di progetto per ogni connettore (P Ed) Resistenza di progetto connettore (P Rd)	148.0 V Ed 0 148.0 VEd a \$4.3.4.2. 8.90 28 3.44 3.49 101.5 1.80 me CNR 22.5 224818 20.21 39.32	kNm < 50% V c,F < 50% V c,F 1.1) KNVm kNm n/2 N/mm^2 UNI 10011; kN mm*3 kN

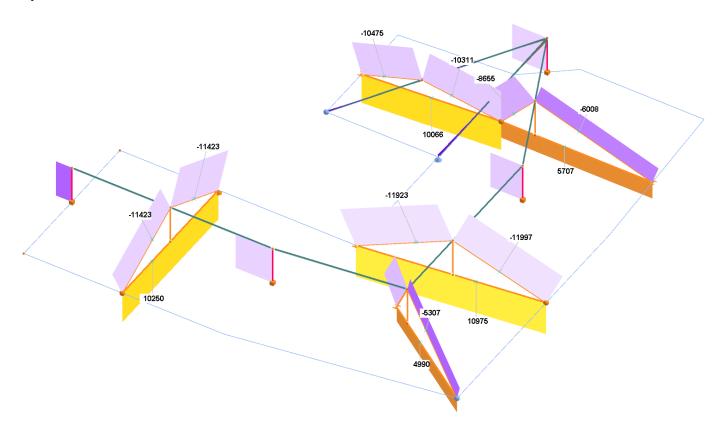
Si riporta di seguito la verifica dellle strututre principali e secondarie del tetto:

Te	tto Volpiano		Verifica	.Colmo	tip	ი 1	_		Località :	Volpiano)	
	Sezione					• •		Tipo di legno:	GL	24		
	altezza trave (h)			- 6	400	mm		Tensione caratt, Flessione		fm,x,k=	24	N/mma
	larghezza ali (b)				200			Tensione caratt. Trazione	ft,0,k=			N/mmg
	Area (A)					mm^2		Tensione caratt. Compression				N/mmg
GEOMETRIA SEZIONE ED ELEMENTO	Peso proprio (pp)				304			Tensione caratt. Taglio	f v,k =			N/mmg
12	Momento d'Inerzia princ. Y (Ly	a		1066666				Modulo elastico normale (E i:				N/mmg
뿔	Modulo di resistenza Y (Wy) El					mm°3		Modulo elastico normale (Eli		_		N/mmg
찍	raggio d'inerzia maggiore (i y)				15.5			Peso specifico =	ango penodo) -	-	3800	
ᇳ				266666				Coefficienti di sicurezza			3000	MILLIC
	Momento d'Inerzia princ. Y(I z									4.45		
ш	Modulo di resistenza Z (Wz) El	lastico				mm^3		y M = Resistenza SI	LU=		Lamellare	
善	raggio d'inerzia minore (i z)				57.7			k def		0.80		
⊼		Lunghezza i	n orizzontale	4.	.89	m		k mod perm=		0.60		
뽔	Inclinazione asse longitudinal	le=			14			k mod lunga=		0.70		
				0.24	435	rad		k mod media=		0.80		
產	Rotazione sezione =				0			k mod breve=		0.90		
ш				0.00	0000	rad		k mod istantanea=		1.00		
喜	Numeri di ritegni torsionali				0			k m (rettangolare)=		0.70		
щ	Distanza tra ritegni torsionali				5.04			Risultati calcoli statici:	M Ed xx	M Ed yy	N ed	V Ed
9	Lunghezza reale:				5.04				(Nm)	(Nm)	(N)	(N)
	Carichi			Coeff y		Coeff 🛡		Sezione in mezzeria	46994	0	9300	
	interasse	3.00	m			di SLE		Appoggio dx:			18599	37299
	Peso proprio (pp)	0.30	kN/mq		1.35	1.00		Risultati calcoli statici:	M Ed xx	M Ed yy	Ned	V Ed
	Permanente		kN/mq		1.5	1.00		[LP]	(Nm)	(Nm)	(N)	(N)
	Acc. Inclinato (solaio)	0.00	kN/mg		1.5	1.00		Sezione in mezzeria	25473	0	5041	
	Acc. Proiettato (Neve)	1.60	kN/mg		1.5	1.00		Appoggio dx:			10082	20218
	Acc. Inclinato (solaio) [LP]	0.00	kN/mg		1.5	1.00		Verifiche resistenti dell	a sezione m	ezzeria		
	Acc. Proiettato (Neve) [LP]	0.00	kN/mg		1.5	1.00		om,y,d= 8.81	N/mmg	fm.v.d=	14.90	N/mmg
	Lineare perm		kN/m		1.5	1.00			N/mmg	fc.0.d=		N/mmg
	Sforzo normale	0	kN		1.5			o o,0,d= 0.12	N/mmg	NEVE: Km	od breve	·
	Carichi lineari di SLU=						1	Resistenza (pressoflex)	· =	0.59		
	QSLU perp Z direz. Y =		14.80	kN/m			1	•		0.41		
	QSLUperp Z direz, X =		0.00	kN/m				Verifiche resistenti dell	a sezione m	ezzeria [LP	1	
	QSLU parallelo Z =			kN/m					N/mma	fm,y,d=		N/mmg
									N/mmg	fc.0.d=		N/mmg
=	QSLUperpZdirez.Y[LP] =		8.02	kN/m					N/mmg			· · · · · · · · · · · · · · · · · · ·
◌	QSLUperp Z direz. X [LP] =			kN/m				Resistenza (pressoflex)		0.41	<1	
CARICHI	QSLUparalleloZ[LP] =		2.00	kN/m				·		0.29		
3								Verifiche resistenti dell	a sezione ar	opoggio		
	Verifica a SLE (deformaz	zioniì					RESISTENZA		N/mmg	fv,d=	1 68	N/mmg
	Carico Perm + Acc (perp Z dir			10	0.05	KN/m			N/mmg	fo.0.d=		N/mma
	Carico accidentale (perp Z dir					KN/m	Œ	0.20		NEVE : Km		
	Carico Perm + Acc (perp Z dir				5.53		照	Resistenza compressio	ne=	0.02		
	Carico accidentale (perp Z dir				0.00		ŭ	Resistenza taglio=		0.42		
	Saliss assider water (perp 2 am							Verifiche resistenti dell	a sezione ar			
	Carico Perm + Acc (perp Z dir	67 X)=			0.00	KN/m	□		a sezione ap N/mmg	fv.d=		N/mmg
	Carico Perin + Acc (perp Z dir Carico accidentale (perp Z dir			_		KN/m	胃胃		N/mmg	fc,0,d=		N/mmg
						KN/m	₽	6 c,o,a = 6.13	Minima	10,0,4-	11.33	TWITTING
	Carico Perm + Acc (perp Z dir						I₩	.		0.04		
	Carico accidentale (perp Z dir	rez. XJ [LP]	=	·	u.UU	KN/m	VERIFICHE	Resistenza compressio	ne=	0.01		
	l.							Resistenza taglio=		0.29	< I	
	Istantanea						l					
	ō amm totale = 1/	200	L=		25.2		ı					
	5=qL^4/(E*J)*	5	/384 =		6.8	mm	I					
	l	050		-	00.0		I					
Ē	5 amm accid = 1/		L=	2	20.2		I					
Deformazioni	5=qL^4/(E*J)*	5	/384 =		3.1	mm	l					
ğ	l						l					
Ē	Lungo periodo						l					
-	ō amm totale = 1/	200	L=		25.2		l					
	5=qL^4/(E*J)*	5	/384 =		6.8	mm	I					
Ë							I					
4	ā amm accid = 1/		L =		20.2		I					
တ	5=qL^4/(E*J)*	5	/384 =		0.0	mm	l					

Т	et	to Volpiano		Verifica	:Colmo 2	2				Località	Volpiano)	
г	П	Sezione							Tipo di legno:	GL	24		
		altezza trave (h)			40	10	mm		Tensione caratt. Flessione	fm.y.k=	fm,s,k=	24	N/mmg
		larghezza ali (b)					mm		Tensione caratt. Trazione	ft,0,k=		16.5	N/mmg
-	, I	Area (A)			12800	00	mm ²		Tensione caratt. Compressio	f c,0,k =		24	N/mmg
SEOMETBIA SEZIONE EN EI EMENTO	: 1	Peso proprio (pp)					N/m		Tensione caratt. Taglio	f v,k =			N/mmq
i.		Momento d'Inerzia princ. $Y(l)$	y)		17066666	67	mm^4		Modulo elastico normale (E is	stantanea) =		11600	N/mmq
		Modulo di resistenza Y (Wy) E	Elastico		853333				Modulo elastico normale (E lu	ungo periodo) =		N/mmq
-	Н	raggio d'inerzia maggiore (i y))				mm		Peso specifico =			3800	N/mc
12	5	Momento d'Inerzia princ. Y(I z	z)		109226666	67	mm^4		Coefficienti di sicurezza	a:			
1	: 1	Modulo di resistenza Z (Wz) E	lastico		682666				γM= Resistenza Sl	_U =		Lamellare	
ı		raggio d'inerzia minore (i z)					mm		k def		0.80		
Ę	1		Lunghezza i	n orizzontale					k mod perm=		0.60		
ij,	ı	Inclinazione asse longitudina	ale=			0			k mod lunga=		0.70		
ě	1				0.0000				k mod media=		0.80		
Ē	:	Rotazione sezione =				0			k mod breve=		0.90		
ū					0.0000				k mod istantanea=		1.00		
1	Н	Numeri di ritegni torsionali				0			k m (rettangolare)=		0.70		
ij,	1	Distanza tra ritegni torsionali			6.4				Risultati calcoli statici:	M Ed xx	M Ed yy	Ned	V Ed
_	4	Lunghezza reale:			6.4					(Nm)	(Nm)	(N)	(N)
		Carichi	4.00		Coeff 🦅		Coeff w		Sezione in mezzeria	123452	0	0	
		interasse	4.60			-	di SLE		Арроддіо дк:			0	
		Peso proprio (pp)		kN/mq		35	1.00		Risultati calcoli statici:	M Ed xx	M Ed yy	Ned	V Ed
		Permanente		kN/mq		1.5	1.00		[LP]	(Nm)	(Nm)	(N)	(N)
		Acc. Inclinato (solaio) Acc. Proiettato (Neve)		kN/mg kN/mg		1.5	1.00 1.00		Sezione in mezzeria Appoggio dx:	66041	0	0	
		Acc. Inclinato (Neve)		kN/ma		ı.ə 1.5	1.00	_	Verifiche resistenti della			U	40330
		Acc. Proiettato (Neve) [LP]		kN/mg		1.5 1.5	1.00		o m,v,d = 14.47		nezzena fm.y.d=	14 90	N/mmg
		Lineare perm		kN/m		1.5	1.00			N/mmg	fo.0.d=		N/mmg
		Sforzo normale		kN		1.5	1.00			N/mmg	NEVE : Km		14IIIIIIIq
		Carichi lineari di SLU=		KI I					Resistenza (pressoflex)		0.97		
		QSLUperp Z direz. Y =		23.74	kN/m				riesistenza (pressonen)		0.68		
		QSLU perp Z direz. X=			kN/m				Verifiche resistenti della	a sezione i			
		QSLU parallelo Z =			kN/m					N/mmg	fm,y,d=		N/mmg
		· •								N/mmg	fo,0,d=		N/mmg
Ξ	:	QSLU perp Z direz. Y [LP] =		12.70	kN/m				a c,0,d= 0.00	N/mmg			·
2	2	QSLU perp Z direz. X [LP] =		0.00	kN/m				Resistenza (pressoflex)	=	0.67	< 1	
CARICHI		QSLU parallelo Z [LP] =		0.00	kN/m						0.47	<1	
_	,							-	Verifiche resistenti della				
		Verifica a SLE (deforma						2		N/mmg	fv,d=		N/mmq
		Carico Perm + Acc (perp Z dir					KN/m	ú	oc,0,d= 0.00	N/mmq	f c,0,d =		N/mmq
		Carico accidentale (perp Z di			1.3		KN/m	SI			NEVE : Km		
		Carico Perm + Acc (perp Z dir			8.7			RESISTENZA	Resistenza compression	ne=	0.00		
		Carico accidentale (perp Z di	irez. YJ[LP]	=	0.0	JU		쮼	Resistenza taglio=		0.54		
		0: 0 : 4 / 3 !	LA.				128.0	VERIFICHE DI	Verifiche resistenti della			LPJ	KII
		Carico Perm + Acc (perp Z dir			_		KN/m	뿌		N/mmq	fv,d=		N/mmq
		Carico accidentale (perp Z di					KN/m	⊇	oc,0,d= 0.00	N/mmq	flo,0,d=	11.59	N/mmq
		Carico Perm + Acc (perp Z dir					KN/m	l ⊭				Lia	
		Carico accidentale (perp Z di	irez. XJ [LP] :	=	0.0	JU	KN/m	Ü	Resistenza compression	ne=	0.00		
									Resistenza taglio=		0.37	<u>< 1</u>	
		İstantanea	200					l					
		ō amm totale = 1/	200	1304 =			mm	l					
		δ=qL^4/(E°J)°	5	/384 =	18	.4	mm	l					
		δ amm accid = 1/	250	L=	20		mm	l					
8	,	δ = q L^4 / (E ° J) °		L= /384=			mm mm	l					
		v-qc 71(c V)	- J	1007 -		. +		l					
Noformazioni		Lungo periodo						l					
.5		ā amm totale = 1/	200	L=	32	.3	mm	l					
2	1	δ=qL^4/(E°J)°		/384 =			mm	l					
ш		,=,= 27				-		l					
0		δ amm accid = 1/	250	L=	25	.8	mm	l					
C	i	δ=qL^4/(E°J)°		/384 =			mm	l					
						_		•					


Tetto Biblioteca Verifica:Colmo 3 Località :	24 fm,x,k=	24 16.5 24 2.7 11600	N/mmq N/mmq N/mmq N/mmq N/mmq N/mmq N/mmc
Alecza trave (h)	1.45 0.80 0.60 0.70 0.80 0.90 1.00 0.70 M Ed yy (Nm)	16.5 24 2.7 11600 6444 3800 Lamellare	N/mmq N/mmq N/mmq N/mmq N/mmq N/mc
larghezza ali (b) 320 mm 128000 mm² 28000 mm² 486.4 N/m 1006666667 mm² 28000	1.45 0.80 0.60 0.70 0.80 0.90 1.00 0.70 M Ed yy (Nm)	16.5 24 2.7 11600 6444 3800 Lamellare	N/mmq N/mmq N/mmq N/mmq N/mmq N/mc
Area (A)	0.80 0.60 0.70 0.80 0.90 1.00 0.70 M Ed yy (Nm)	24 2.7 11600 6444 3800 Lamellare	N/mmq N/mmq N/mmq N/mmq N/mm
Peso proprio (pp)	0.80 0.60 0.70 0.80 0.90 1.00 0.70 M Ed yy (Nm)	2.7 11600 6444 3800 Lamellare	N/mmq N/mmq N/mmq N/mc
Momento d'Inerzia prino. Yil z 1032266667 mm 4 Modulo di resistenza Z (Wz) Elastico 682667 mm 3 y M = Resistenza SLU = k def k mod perm= k mod lunga = k mod perm= k	0.80 0.60 0.70 0.80 0.90 1.00 0.70 M Ed yy (Nm)	11600 6444 3800 Lamellare	N/mmq N/mmq N/mc
Momento di Inerzia prino. Yil z 1032266667 mm 4 Modulo di resistenza Z (Wz) Elastico 682667 mm 3 Y M = Resistenza SLU = k def k mod perm= k mod lunga = k mod perm=	0.80 0.60 0.70 0.80 0.90 1.00 0.70 M Ed yy (Nm)	6444 3800 Lamellare	N/mmq N/mc
Momento d'Inerzia prino. Yil z 1032266667 mm 4 Modulo di resistenza Z (Wz) Elastico 682667 mm 3 y M = Resistenza SLU = k def k mod perm= k mod lunga = k mod perm= k	0.80 0.60 0.70 0.80 0.90 1.00 0.70 M Ed yy (Nm)	3800 Lamellare	N/mc ·
Momento di Inerzia prino. Yil z 1032266667 mm 4 Modulo di resistenza Z (Wz) Elastico 682667 mm 3 Y M = Resistenza SLU = k def k mod perm= k mod lunga = k mod perm=	0.80 0.60 0.70 0.80 0.90 1.00 0.70 M Ed yy (Nm)	Lamellare N ed	
Modulo di resistenza Z (Wz) Elastico 6826667 mm³3 32.4 mm 5 kdef kmod perma k mod lunga= k mod lunga= k mod breva= k mod b	0.80 0.60 0.70 0.80 0.90 1.00 0.70 M Ed yy (Nm)	N ed	V Fd
Rotazione sezione = 0 0 · k mod breve= k mod istantanea= k m (rettangolare)= 0 · k mod breve= k mod istantanea= k m (rettangolare)= 0 · k mod istantanea= k m (rettangolare)= 0 · k m (rettangolare)=	0.80 0.60 0.70 0.80 0.90 1.00 0.70 M Ed yy (Nm)	N ed	V Fd
Rotazione sezione = 0	0.60 0.70 0.80 0.90 1.00 0.70 M Ed yy (Nm)		V Fd
Rotazione sezione = 0	0.70 0.80 0.90 1.00 0.70 M Ed yy (Nm)		V Fd
Rotazione sezione = 0	0.80 0.90 1.00 0.70 M Ed yy (Nm)		V Ed
Rotazione sezione = 0.00000 rad 0.000000 rad 0.00000000000000000000000000000000000	0.90 1.00 0.70 M Ed yy (Nm)		V Fd
Carifobi Coeff y Coeff y Sezione in mezzeria 124047 interasse 4.85 m di SLE Appoggio dix:	1.00 0.70 M Ed yy (Nm)		V Ed
Carifobi Coeff y Coeff y Sezione in mezzeria 124047 interasse 4.85 m di SLE Appoggio dix:	0.70 M Ed yy (Nm)		V Ed
Carifobi Coeff y Coeff y Sezione in mezzeria 124047 interasse 4.85 m di SLE Appoggio dix:	M Ed yy (Nm)		V Ed
Carifobi Coeff y Coeff y Sezione in mezzeria 124047 interasse 4.85 m di SLE Appoggio dix:	(Nm)		
Carifricia Coeff y Coeff y Sezione in mezzeria 124047 interasse 4.85 m di SLE Appoggio dix:			(N)
interasse 4.85 m di SLE Appoggio dx:	U	040	
		0	
Peso proprio (pp) 0.30 kN/mg 1.35 1.00 Risultati calcoli statici: MEd xx	M Ed yy	Ned	V Ed
Perso proprio (pp) U.30 kN/mq I.35 I.00 Hisuitati calcoli statici: MEd xx Permanente 1.50 kN/mq I.5 I.00 [LP] (Nm)	M Ed yy (Nm)	N ed (N)	(N)
Acc. Inclinato (solaio) 0.00 kN/mg 1.5 1.00 Sezione in mezzeria 66298	((VIII)	04)	
Acc. Projettato (Neve) 1.60 kN/mq 1.5 1.00 Appoggio dx:		0	
Acc. Inclinato (solaio) [LP] 0.00 kWmq 1.5 1.00 Verifiche resistenti della sezione me	TTOTIO		42004
	fm.y.d=	14 90	N/mmg
	fc.0.d=		N/mma
	NEVE : Km		
Carichi lineari di SLU=	0.98		
QSLUperp Zdirez, Y = 25.00 kN/m	0.68		
QSLU perp Z direz. X = 0.00 kN/m Verifiche resistenti della sezione me			
	fm,y,d=		N/mmg
	fc,0,d=		N/mmg
	NEVE : Km		
QSLUperp Z direz. X(LP) = 0.00 kN/m Resistenza (pressoflex)=	0.67		
QSLUperpZdirez, Y[LP] = 13.36 kN/m	0.47	< 1	
	oippoo		
Verifica a SLE (deformazioni) t d = 0.92 N/mmq Carico Perm + Acc (perp Z direz. Y) = 16.98 KN/m 0.0,0 d = 0.00 N/mmq Carico accidentale (perp Z direz. Y) [LP] = 9.22 7 Resistenza compressione = Carico accidentale (perp Z direz. Y) [LP] = 0.00 Resistenza taglio =	fv.d=	1.68	N/mma
Carico Perm + Acc (perp Z direz, Y)= 16.98 KN/m	fc,0,d=	14.90	N/mmg
Carico accidentale (perp Z direz, Y)= 7.76 KN/m	NEVE: Km	od breve	·
Carico Perm + Acc (perp Z direz. Y) [LP] = 9.22 7 Resistenza compressione=	0.00		
Carico accidentale (perp Z direz. Y) [LP] = 0.00 # Resistenza taglio=	0.55	<1	
☐ Verifiche resistenti della sezione app	oggio [LF		
	fv,d=		N/mmq
Carico Perm + Acc (perp Z direz. X)= 0.00 KN/m carico accidentale (perp Z direz. X)= 0.00 KN/m carico Perm + Acc (perp Z direz. X) [LP] = 0.00 KN/m Carico accidentale (perp Z direz. X) [LP] = 0.00 KN/m Resistenza compressione=	f c,0,d =	11.59	N/mmg
Carico Perm + Acc (perp Z direz, X) [LP] = 0.00 KN/m	NEVE: Km	od breve	·
Carico accidentale (perp Z direz. X) [LP] = 0.00 KN/m Resistenza compressione=	0.00		
Resistenza taglio=	0.38		
Istantanea			
5 amm totale = 1/ 200 L = 31.5 mm			
5=qL^4/(E°J)° 5 /384= 17.6 mm			
5 amm accid = 1/ 250 L = 25.2 mm			
\$ 5 = qL^4/(E*J)*			
S amm accide 1/ 250			
Lungo periodo			
5 amm totale = 1/ 200 L = 31.5 mm			
<u> </u>			
i δ amm accid = 1/ 250 L = 25.2 mm i δ = α L^4 / (E ' J)' 5 /384 = 0.0 mm			
o 5=qL^4/(E*J)*			

Te	tto Volpiano		Verifica	: Falso	pu	ntone :	2		Località:	Volpiano)	
	Sezione							Tipo di legno:	GL	24		
	altezza trave (h)				300	mm		Tensione caratt. Flessione	fmuk=	fm,s,k=	24	N/mmg
	larghezza ali (b)					mm		Tensione caratt. Trazione	ft.0.k=	, . ,		N/mma
	Area (A)					mm^2		Tensione caratt. Compression				N/mmg
2	Peso proprio (pp)					N/m		Tensione caratt. Taglio				N/mmg
2	Momento d'Inerzia princ. Y (I	u)		337500				Modulo elastico normale (E i	,			N/mmg
Ë	Modulo di resistenza Y (Wy) E					mm°3		Modulo elastico normale (El				N/mmg
찍.	raggio d'inerzia maggiore (i y)					mm		Peso specifico =	urigo periodo) -		3800	
ш				84375							3000	IVIIIC
Ω.	Momento d'Inerzia princ. Y(I a							Coefficienti di sicurezz		4.45		
ш	Modulo di resistenza Z (Wz) B	lastico				mm^3		γ M = Resistenza Si	LU=		Lamellare	
롲.	raggio d'inerzia minore (i z)				13.3			k def		0.80		
SEZIONE ED ELEMENTO	Geometria		in orizzontale	- 6	.71			k mod perm=		0.60		
ĬĬ.	Inclinazione asse longitudina	ale=			0			k mod lunga=		0.70		
9				0.00	000	rad		k mod media=		0.80		
₩.	Rotazione sezione =				0			k mod breve=		0.90		
Ε.				0.00	000	rad		k mod istantanea=		1.00		
٣	Numeri di ritegni torsionali				0			k m (rettangolare)=		0.70		
GEOMETRIA	Distanza tra ritegni torsionali				6.71	m		Risultati calcoli statici:	M Ed xx	M Ed yy	Ned	V Ed
ö	Lunghezza reale:				6.71			arrari valcon statici.	(Nm)	(Nm)	(N)	(N)
	Carichi			Coeff y	U. I I	Coeff w		Sezione in mezzeria	29412		0	
		1.00	I_	Coett 🔏		di SLE		Sezione in mezzeria Appogatio dx:	23412	U	<u> </u>	
	interasse						ш					
	Peso proprio (pp)		kN/mq		1.35	1.00		Risultati calcoli statici:	M Ed xx	M Ed yy	Ned	V Ed
	Permanente		kN/mq		1.5	1.00		[LP]	(Nm)	(Nm)	(N)	(N)
	Acc. Inclinato (solaio)		kN/mq		1.5	1.00		Sezione in mezzeria	15905	0	0	
	Acc. Proiettato (Neve)		kN/mq		1.5	1.00		Appoggio dx:			0	948
	Acc. Inclinato (solaio) [LP]	0.00	kN/mq		1.5	1.00		Verifiche resistenti dell	a sezione me	zzeria		
	Acc. Proiettato (Neve) [LP]	0.00	kN/mg		1.5	1.00		g m,y,d = 13.07	N/mmg	fm,y,d=	14.90	N/mmg
	Lineare perm	0.00	kN/m		1.5	1.00		g m,z,d = 0.00	N/mmg	fc,0,d=	14.90	N/mmg
	Sforzo normale	0	kN		1.5			cc.0.d= 0.00	N/mma	NEVE: Km	od breve	
	Carichi lineari di SLU=							Resistenza (pressoflex)	· =	0.88		
	QSLUperpZdirez.Y=		5.23	kN/m				·		0.61	<1	
	QSLU perp Z direz. X=			kN/m				Verifiche resistenti dell	a sezione me			
	QSLU parallelo Z =			kN/m					N/mma	fm.v.d=		N/mma
	Q OCO parallelo E -		0.00	KIMIIII					N/mma	fc.0.d=		N/mmg
_	QSLUperp Z direz. Y [LP] =		2 83	kN/m					N/mmg	NEVE : Km		ranning
프.	QSLUperp Z direz. X [LP] =			kN/m						0.61		
CARICHI				kN/m				Resistenza (pressoflex)	 =	0.61		
烹	QSLU parallelo Z [LP] =		0.00	KINIM							<u> </u>	
<u> </u>							•	Verifiche resistenti dell				
	Verifica a SLE (deforma						2		N/mmq	f v,d =		N/mmq
	Carico Perm + Acc (perp Z di					KN/m	面	c c,0,d = 0.00	N/mmq	fc,0,d=		N/mmg
	Carico accidentale (perp Z d	lirez. Y)=			1.60	KN/m	31			NEVE : Km	od breve	
	Carico Perm + Acc (perp Z di	irez. Y) [LP] =	=		1.97		8	Resistenza compressio	ne=	0.00	<1	
	Carico accidentale (perp Z d	lirez. Y) [LP]	=	0	0.00		RESISTENZA	Resistenza taglio=		0.35	< 1	
							1	Verifiche resistenti dell	a sezione ap	poggio (LP	1	
	Carico Perm + Acc (perp Z di	irez. X)=		0	0.00	KN/m	Ξ	τd= 0.32	N/mmg	fv,d=	1.30	N/mmg
	Carico accidentale (perp Z d			•	nn r	KN/m	其		N/mma	fc.0.d=		N/mma
	Carico Perm + Acc (perp Z di		_	_		KN/m	ᇤ	0,0,0		NEVE : Km		
	Carico accidentale (perp Z d					KN/m	≅	Resistenza compressio		0.00		
	canco accidentale (perp 2 d	mez. A) [LP]	-		5.00	ESTAILIE	VERIFICHE	Resistenza compressio Resistenza taglio=	ne-	0.00		
	l							nesistenza taglio=		0.24	X I	
	Istantanea	200	l.	_			ı					
		200	L=			mm	ı					
	δ amm totale = 1/				24.1	mm	ı					
	δ amm totale = 1/ δ = q L^4 / (E°J)°	5	/384 =				ı					
	δ=qL^4/(E°J)°											
·ē	5 = q L^4 / (E * J) * 5 amm accid = 1/	250	L=		26.8		l					
ioni	δ=qL^4/(E°J)°	250			26.8 10.8							
azioni	5=qL^4/(E*J)* 5=qL^4/(E*J)*	250	L=									
ımazioni	5 = q L^4 / (E * J) * 5 amm accid = 1/	250 5	L=		10.8	mm						
eformazioni	5=qL^4/(E*J)* 5=qL^4/(E*J)*	250	L=			mm						
Deformazioni	5 = qL^4/(E*J)* 5 = qL^4/(E*J)* Lungo periodo	250 5 200	L = /384 =	3	10.8	mm						
E. Deformazioni	\$ = q L^4 / (E * J) * \$ amm accid = 1/ \$ = q L^4 / (E * J) * Lungo periodo \$ amm totale = 1/	250 5 200	L = /384 = L =	3	10.8 33.6	mm						
	\$ = q L^4 / (E * J) * \$ amm accid = 1/ \$ = q L^4 / (E * J) * Lungo periodo \$ amm totale = 1/	250 5 200	L = /384 = L =	3	10.8 33.6	mm mm mm						


Te	tto Volpiano	V	erifica:	Falso	pun	tone			Località :	Volpian	0	
	Sezione							Tipo di legno:	GL	24		
	altezza trave (h)				200	mm	1	Tensione caratt. Flessione	fmuk=	fm,s,k=	24	N/mmg
	larghezza ali (b)				150			Tensione caratt. Trazione	ft.0.k=			N/mma
	Area (A)			31		mm^2		Tensione caratt. Compression				N/mmg
GEOMETRIA SEZIONE ED ELEMENTO	Peso proprio (pp)			,		N/m		Tensione caratt, Taglio	fv.k=			N/mma
Ξ				40000								
₩	Momento d'Inerzia princ. Y (I y			100000				Modulo elastico normale (E i:				N/mmq
面	Modulo di resistenza Y (Wy) El				0000			Modulo elastico normale (E l	ungo periodo) =			N/mmq
급	raggio d'inerzia maggiore (i y)				57.7			Peso specifico =			3800	N/mc
_	Momento d'Inerzia princ. Y(1 z))			0000			Coefficienti di sicurezz	a:			
Ш	Modulo di resistenza Z (Wz) El	lastico		75	0000	mm^3		yM= ResistenzaSl	LU=	1.45	Lamellare	
뿔	raggio d'inerzia minore (i z)				43.3	mm		k def		0.80		
▣	Geometria l	Lunghezza in c	rizzontale		4.5	m	1	k mod perm=		0.60		
N	Inclinazione asse longitudinal				27			k mod lunga=		0.70		
3				η 4	7124	rad		k mod media=		0.80		
3	Rotazione sezione =			0.4	0			k mod breve=		0.90		
Œ	i locazione sezione -			0.0	0000			k mod istantanea=		1.00		
Щ	Ni			0.0	0	iau		k m (rettangolare)=		0.70		
a	Numeri di ritegni torsionali											
竝	Distanza tra ritegni torsionali				5.05			Risultati calcoli statici:	M Ed xx	M Ed yy	Ned	V Ed
9	Lunghezza reale:				5.05				(Nm)	(Nm)	(N)	(N)
	Carichi			Coeff y	,	Coeff 💗		Sezione in mezzeria	13941	0	5626	
	interasse	1.00 m	ı			di SLE		Appoggio dx:			11252	11042
	Peso proprio (pp)	0.30 kl	N/ma		1.35	1.00		Risultati calcoli statici:	M Ed xx	M Ed yy	Ned	V Ed
	Permanente	1.50 kl			1.5	1.00		[LP]	(Nm)	(Nm)	(N)	(N)
	Acc. Inclinato (solaio)	0.00 kl			1.5	1.00		Sezione in mezzeria	7866	00	3174	(1.5)
	Acc. Proiettato (Neve)	1.60 kl			1.5	1.00		Appoggio dx:	1000		6349	6230
	Acc. Inclinato (solaio) [LP]	0.00 kl			1.5	1.00		Verifiche resistenti dell			0040	0200
											14 00	NII
	Acc. Proiettato (Neve) [LP]	0.00 kl			1.5	1.00			N/mmg	fm,y,d=		N/mmq
	Lineare perm	0.00 kl			1.5	1.00			N/mmq	f c,0,d =		N/mmq
	Sforzo normale	0 kl	N		1.5				N/mmq	NEVE : Kn		
	Carichi lineari di SLU=							Resistenza (pressoflex)	 =	0.94		
	QSLU perp Z direz. Y =		4.37							0.66		
	QSLU perp Z direz. X =		0.00	kN/m				Verifiche resistenti dell	a sezione me	zzeria [LP]	
	Q SLU parallelo Z =		2.23	kN/m				g m,y,d = 7.87	N/mmg	fm,y,d=	11.59	N/mmg
								g m,z,d = 0.00	N/mmg	f c,0,d =	11.59	N/mmg
=	QSLUperp Z direz, Y [LP] =		2.47	kN/m				c c.0.d = 0.11	N/mma			·
ᄒ	QSLUperp Z direz. X [LP] =		0.00	kN/m				Resistenza (pressoflex)		0.68	< 1	
霻	QSLUparalleloZ[LP] =		1.26					(•	0.48		
CARICHI	a oro barancio r (ri)			15.1				Verifiche resistenti dell	a coziono an			
_	Verifica a SLE (deformaz	-::)					3		N/mmg	fv.d=	1 00	N/mma
					2 00	KN/m	RESISTENZA			rv,a= fc,0,d=		
	Carico Perm + Acc (perp Z dire						ш	oc,0,d= 0.38	N/mmg			N/mmq
	Carico accidentale (perp Z dir					KN/m	2	<u></u>		NEVE : Kn		
	Carico Perm + Acc (perp Z dire				1.71		120	Resistenza compressio	ne=	0.03		
	Carico accidentale (perp Z dir	rez. Y) [LP] =			0.00		풑	Resistenza taglio=		0.33		
							百	Verifiche resistenti dell				
	Carico Perm + Acc (perp Z dire	ez. X)=				KN/m		t d = 0.31	N/mmq	fv,d=	1.30	N/mmq
	Carico accidentale (perp Z dir	rez. X)=		•	0.00	KN/m	VERIFICHE	o c,0,d = 0.21	N/mmg	flo,0,dl=	11.59	N/mmg
	Carico Perm + Acc (perp Z dire				0.00	KN/m	ΙĔ					·
	Carico accidentale (perp Z dir				0.00		₩	Resistenza compressio		0.02	71	
	Canco accidentale (perp 2 dil	(ez. A) [EF] -			0.00	NIMIII	18	Resistenza taglio=	iie-	0.02		
							-	nesistenza taglio-		0.24	X 1	
	Istantanea						l					
	δ amm totale = 1/	200 L			25.3		l					
	δ=qL^4/(E°J)*	5 /3	i84 =		21.7	mm	I					
	_						l					
72	δ amm accid = 1/	250 L			20.2		l					
.2	δ=qL^4/(E°J)°	5 /3	84 =		9.3	mm	l					
ğ							1					
E	Lungo periodo						l					
Deformazioni	õ amm totale = 1/	200 L	=		25.3	mm	I					
ŏ	δ=qL^4/(E*J)*	5 /3	84 =		22.4		I					
ш							I					
5	ā amm accid = 1/	250 L	=		20.2	mm	I					
S.L.	δ=qL^4/(E'J)'	5 /3			0.0		I					
	1- 1	3,0			0.0							

VERIFICHE DELLE CAPRIATE E DEI PILASTRI DEL SOTTOTETTO:

Si è quindi modellato il sottotetto con le travi di colmo (in verde), le capriate (in arancione) ed i pilastri in muratura (in rosso) mentre il cordolo sul bordo è in grigio::

Applicando i carichi sui colmi (già verificati nei precedenti fogli di calcolo) si sono ottenute le sollecitazioni nelle capriate in condizioni SLU STR:

Di seguito si riportano le verifiche degli elementi lignei in lamellare GL24:

VERIFICA ASTE IN LEGNO - RELAZIONE SINTETICA

```
Normativa : NTC18 - EC5 (UNI EN 1995-1-1) Unita' di misura: cm; daN; daN/cm; daNcm; daN/cm2; daN/cm3.
Numero aste
RESISTENZE LIMITE RAGGIUNTE (%) :
asta | sez |
3 | 2 |
4 | 2 |
5 | 2 |
6 | 2 |
7 | 2 |
12 | 2 |
                                             fsPfd|fsIf1|fsIto|fsTau|
.083| .520| .520|0.000|
                                                                                                                             ΙVΕ
                                                                                                 Caso
                       20.
                                   20.
                                                                                                                             si
                       20.
                                                .424 0.000
                                                                         .007
                                   20.
                                                                                                   \bar{1}- \bar{1}
                                                .424 0.000
                                                                        .007
                                                                                     .011
                                                                        .520 | 0.000
                                                                                                                     52
                                                .083
                                                          .520
                                                                                                   1-
                       20.
                                   20.
                                                                                                        1
                                                                                                                             si
                                             0.000 | .002 | .002 | 0.000
0.000 | 0.000 | 0.000 | 0.000
                      20.
20.
                                   20.
20.
                                                                                                                             |si
|si
                                                                        .258 | 0.000
       13
                22222222222
                       20.
                                   20.
                                                .060
                                                            .258
                                                                                                   1-
                                                                                                        ī
                                                                                                                     26
                                                                                                                             si
                       20.
                                   20.
                                                .018
                                                                         .382 0.000
                                                                                                                             si
                       20.
                                   20.
                                             0.000|0.000|0.000|0.000
                                               .000|0.000|0.000|0.000

.090| .672| .672|0.000

.091| .637| .637|0.000

.367|0.000|0.000|0.000

.367|0.000|0.000|0.000

.167|0.000|0.000| .001

.167|0.000|0.000|0.000
      18
19
22
23
24
25
                                                                                                        1
                                                                                                                     67
                       20.
                                   20.
                                                                                                   1-
                                   20.
20.
                       20.
20.
                                                                                                        \overline{1}
                                                                                                                     64
37
37
                                                                                                   1-
                                                                                                                             si
                                                                                                                             sį
                       20.
                                   20.
                                                                                                   ī-
                                                                                                        ī
                                                                                                                             si
                                                                                                         1
1
                       20.
                                   20.
                                                                                                                             SÍ
                       20.
                                   20.
                                                                                                                             si
                                               .107 | 0.000

0.000 | .001

.242 | 0.000

.242 | 0.000

.047 | .237

.023 | .513

.067 | .389
      32
33
34
                       20.
                                   20.
                                             0.000
                                                                        .001 0.000
                                                                                                                             si
                                                                                                                     24
24
                      20.
20.
                                   20.
20.
                                                                                   016
                                                                                                         1
1
                                                                        .003
                                                                        .003 | .010
.003 | .004
.237 | 0.000
.513 | 0.000
.389 | 0.000
                                                                                                   ī-
                                                                                                                             si
                                   20.
20.
20.
                                                                                                                     24
51
39
       35
                                                                                                   1-
                2
2
2
2
                       20.
                                                                                                        1
                                                                                                                             sį
      36
37
                       20.
20.
20.
                                                                                                         1
                                                                                                   ī-
                                                                                                                             si
si
                       20.
                                   20.
                                                .070
                                                            .308
                                                                         .308 | 0.000
                                                                                                                             si
                       20.
                                   20.
                                                .335 | 0.000 | 0.000 | 0.000 |
```

VERIFICA ASTE IN LEGNO - RELAZIONE ESTESA

VERIFICA ASTE IN LEGNO

```
: NTC18 - EC5 (UNI EN 1995-1-1)
Normativa
Unita' di misura: cm; daN; daN/cm; daNcm; daN/cm2; daN/cm3.
Numero aste : 23
Numero aste
```

MATERIALE

```
Descrizione: Legno lamellare
Morma : UNI EN 1194
fmk = 240. ft0k= 165. ft90k=4.
EOm = 116000 E005= 94000. E90m =3900.
                                                                        classe
                                                                                              fc90k=27.
                                                                      fc0k= 240.
Gm = 7200.
                                                                                                                      fvk = 27.
                                                                                              G005 = 5834.5
Rok = .00037 Rom = .00045
E' stata applicata la riduzione della larghezza ai fini del calcolo delle
tau per taglio [Tzd, Tyd]: Kcr= 2.5/fvk = 0.9259 [C4.4.8.1.9]
```

DATI [NTC18 4.4.6]

```
Tipo legno : Legno lamellare incollato Riferimento : EN 14080 Classe di servizio: 1 ; gM= 1.45 ; kdef= 0.6 ; betaC= 0.1
```

classi di durata	a Kmod ft0d * fc0d fmd * fvd Casi di carico	
Permanente	.600 68.28 99.31 99.31 11.17 1	
Lunga durata	.700 79.66 115.86 115.86 13.03 non prevista	Ì
Media durata	.800 91.03 132.41 132.41 14.90 non prevista	ĺ
Breve durata	.900 102.41 148.97 148.97 16.76 non prevista	Ĺ
Istantaneo	1.100 125.17 182.07 182.07 20.48 non prevista	İ
Z 1		

(*) valori per Kh=1

CASI DI CARICO

```
N | Descrizione
1|SLU SENZA SISMA
```

SEZIONI RETTANGOLARI

```
h |alfa |
20. |4.808|
                                                                               Km | Ksh
.7 |1.15
                                 Jz | Jy |
13333.3| 13333.3|
                    400.
                                                               33333.3
```

VERIFICHE

Rettangolare (sezione n. 2; b=20; h=20) ------ ASTA (884-886) 3 Khz= 1.1 ; Khy= 1.1 ; Kht= 1.1 (legno lamellare) Instabilita' torsionale | L0 |Scrit |LamRel|K crit| | 453.04|2567.7| .306| 1.000| | 453.04|2567.7| .306| 1.000| Instabilita' flessionale -- PROGR.(1) SOLLECITAZIONI MY 0.0 TY_{0.0}| | Caso | | 1- 1| TZ | 0.0| MT | N | 0.0| -11423.1| 0.0 TENSIONI Caso |St0d Sc0d Smzd Smyd fsPfd fsIfl fsIto|Ttozd Tzd Ttoyd Tyd fsTau|VE| 1- 1| 0.0| 28.6| 0.0| 0.0| .083| .520| .520|0.00| 0.0|0.00| 0.0|0.000|si| ---- PROGR.(9) **SOLLECITAZIONI** | Caso | | 1- 1| TENSIONI | Caso | St0d Sc0d Smzd Smyd fsPfd fsIfl fsIto | Ttozd Tzd Ttoyd Tyd fsTau | VE | 1-1 | 0.0 | 28.6 | 0.0 | 0.0 | 0.83 | .520 | .520 | 0.00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | Rettangolare (sezione n. 2; b=20; h=20) ------ ASTA (887-886) 4 Khz= 1.1 ; Khy= 1.1 ; Kht= 1.1 (legno lamellare) Instabilita' flessionale |As| L0 | Lam |LamRel| k | kc | | Z | 406.50 | 70.41 | 1.132 | 1.183 | .656 | Y | 406.50 | 70.41 | 1.132 | 1.183 | .656 Instabilita' torsionale | L0 | Scrit | LamRel | K crit | | 406.50 | 2861.7 | .290 | 1.000 | | 406.50 | 2861.7 | .290 | 1.000 | ---- PROGR.(1) 0.00 SOLLECITAZIONI Caso | 1- 1| N 10249.7 -29.7 12065.8 TENSIONI Caso |StOd ScOd Smzd Smyd fsPfd fsIfl fsIto|Ttozd Tzd Ttoyd Tyd fsTau|VE| 1- 1| 25.6| 0.0| 9.0| 0.0| .424|0.000| .007|0.00| 0.0|0.00| .1| .011|si| ---- PROGR.(9) SOLLECITAZIONI N 10249.7 | Caso | | 1- 1| MZ0.0 TY | -29.7| TENSIONI Rettangolare (sezione n. 2; b=20; h=20) ------ ASTA (888-887) 5 Khz= 1.1 ; Khy= 1.1 ; Kht= 1.1 (legno lamellare) Instabilita' torsionale | L0 | Scrit | LamRel | K crit | | 406.50 | 2861.7 | .290 | 1.000 | | 406.50 | 2861.7 | .290 | 1.000 | Instabilita' flessionale ---- PROGR.(1) 0.00 SOLLECITAZIONI MT | 0.0| | Caso | | 1- 1| N | 10249.7 Caso |StOd ScOd Smzd Smyd fsPfd fsIfl fsIto|Ttozd Tzd Ttoyd Tyd fsTau|VE| 1- 1| 25.6| 0.0| 0.0| 0.0| .341|0.000|0.000|0.00| 0.0|0.00| .1| .011|si| ---- PROGR.(9) SOLLECITAZIONI MT_{0.0} Caso | 1- 1| 12065.8 TENSIONI | Caso | StOd ScOd Smzd Smyd fsPfd fsIfl fsIto|Ttozd Tzd Ttoyd Tyd fsTau|VE| | 1- 1| 25.6| 0.0| 9.0| 0.0| .424|0.000| .007|0.00| 0.0|0.00| .1| .011|si|

Rettangolare (sezione n. 2; b=20; h=20) ------ ASTA (888-884) 6 Khz= 1.1; Khy= 1.1; Kht= 1.1 (legno lamellare)

Instabilita' torsionale | L0 |Scrit |LamRel|K crit| | 453.04|2567.7| .306| 1.000|

Instabilita' flessionale |As| L0 | Lam |LamRel| k | kc | | Z| 453.04| 78.47| 1.262| 1.345| .553|

ESE

| Y| 453.04| 78.47| 1.262| 1.345| .553| | 453.04|2567.7| .306| 1.000| ---- PROGR.(1) 0.00 SOLLECITAZIONI MT | N | 0.0| -11423.1| TZ | 0.0| 0.0 1- 1 TENSTONT | Caso | St0d Sc0d Smzd Smyd fsPfd fsIfl fsIto|Ttozd Tzd Ttoyd Tyd fsTau|VE| | 1- 1| 0.0| 28.6| 0.0| 0.0| .083| .520| .520|0.00| 0.0|0.00| 0.0|0.000|si| ---- PROGR.(9) SOLLECITAZIONI : MZ | MY | 0.0| 0.0| TZ | 0.0 | Caso | | 1- 1| TENSIONI | Caso | St0d | Sc0d | Smzd | Smyd | fsPfd | fsIf1 | fsIto | Ttozd | Tzd | Ttoyd | Tyd | fsTau | VE | | 1- 1 | 0.0 | 28.6 | 0.0 | 0.0 | 0.83 | .520 | .520 | 0.00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | ----- ASTA (887-884) 7 Instabilita' torsionale | L0 |Scrit |LamRel|K crit| | 200.00|5816.4| .203| 1.000| | 200.00|5816.4| .203| 1.000| Instabilita' flessionale |As| L0 | Lam |LamRel| | Z| 200.00| 34.64| .557 | Y| 200.00| 34.64| .557 | kc .965 .668 .668 ---- PROGR.(1) 0.00 SOLLECITAZIONI MY 0.0 MZ ΜT Caso | 0.0 0.0 0.0 0.0 TENSTONT Caso |StOd ScOd Smzd Smyd fsPfd fsIfl fsIto|Ttozd Tzd Ttoyd Tyd fsTau|VE| 1- 1| 0.0| .1| 0.0| 0.0|0.000| .002| .002|0.00| 0.0|0.00| 0.0|0.000|si| ---- PROGR.(9) SOLLECITAZIONI TZ 0.0 MY 0.0 TY_{0.0}| MZ0.0 1- 1İ TENSIONI | Caso | St0d | Sc0d | Smzd | Smyd | fsPfd | fsIf1 | fsIt0 | Ttozd | Tzd | Ttoyd | Tyd | fsTau | VE | | 1- 1 | 0.0 | .1 | 0.0 | 0.0 | 0.000 | .002 | .002 | 0.00 | 0.0 | 0.00 | 0.0 Rettangolare (sezione n. 2; b=20; h=20) ------ ASTA (894-895) 12 Khz= 1.1 ; Khy= 1.1 ; Kht= 1.1 (legno lamellare) Instabilita' torsionale | L0 | Scrit | LamRel | K crit | | 200.00 | 5816.4 | .203 | 1.000 | | 200.00 | 5816.4 | .203 | 1.000 | Instabilita' flessionale | kc .668 .965 . 965 ---- PROGR.(1) 0.00 SOLLECITAZIONI | Caso | | 1- 1| MY | 0.0| MT | 0.0| N | 0.0| | Caso | StOd | ScOd | Smzd | Smyd | fsPfd | fsIf1 | fsIt0 | Ttozd | Tzd | Ttoyd | Tyd | fsTau | VE | | 1 - 1 | 0.0 | 0. ---- PROGR.(9) 200.00 SOLLECITAZIONI N 0.0 ΜZ Caso | 0.0 TENSIONI | Caso | StOd ScOd Smzd Smyd fsPfd fsIfl fsIto | Ttozd Tzd Ttoyd Tyd fsTau | VE | 1-1 | 0.0 | 0. Rettangolare (sezione n. 2; b=20; h=20) ------Khz= 1.1 ; Khy= 1.1 ; Kht= 1.1 (legno lamellare) ----- ASTA (893-895) 13 Instabilita' flessionale |As| L0 | Lam |LamRel| | Z | 233.24 | 40.40 | .650 | Y | 233.24 | 40.40 | .650 Instabilita' torsionale | L0 |Scrit |LamRel|K crit| | 233.24|4987.5| .219| 1.000| | 233.24|4987.5| .219| 1.000| | kc .650 .729 .729 ---- PROGR.(1) 0.00 SOLLECIȚAZIONI MY 0.0 MZ Caso | 1- 1| 0.0 -9698.3 0.0

ESE

TENSTONT | Caso | St0d | Sc0d | Smzd | Smyd | fsPfd | fsIf1 | fsIt0| Ttozd | Tzd | Ttoyd | Tyd | fsTau | VE | | 1- 1 | 0.0 | 24.2 | 0.0 | 0.0 | 0.60 | .258 | .258 | 0.00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | | ---- PROGR.(9) SOLLECITAZIONI Caso | 1- 1 ΜZ 0.0 TENSIONI Rettangolare (sezione n. 2; b=20; h=20) ------ ASTA (895-892) 14 Khz= 1.1 ; Khy= 1.1 ; Kht= 1.1 (legno lamellare) Instabilita' flessionale |As| L0 | Lam |LamRel| k | kc | | Z| 584.68|101.27| 1.629| 1.893| .350| | Y| 584.68|101.27| 1.629| 1.893| .350| Instabilita' torsionale | L0 |Scrit |LamRel|K crit| | 584.68|1989.6| .347| 1.000| | 584.68|1989.6| .347| 1.000| ---- PROGR.(1) 0.00 SOLI ECTTAZIONI N | -5307.4| Caso | 1- 1| 0.0 TENSIONI Caso |StOd ScOd Smzd Smyd fsPfd fsIfl fsIto|Ttozd Tzd Ttoyd Tyd fsTau|VE| 1- 1| 0.0| 13.3| 0.0| 0.0| .018| .382| .382|0.00| 0.0|0.00| 0.0|0.000|si| ---- PROGR.(8) SOLLECITAZIONI MT | 0.0| N | -5307.41 TENSIONI | Caso | St0d | Sc0d | Smzd | Smyd | fsPfd | fsIf1 | fsIt0| Ttozd | Tzd | Ttoyd | Tyd | fsTau | VE | | 1- 1 | 0.0 | 13.3 | 0.0 | 0.0 | 0.18 | .382 | .382 | 0.00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | | ---- PROGR.(9) 584.68 SOLLECITAZIONI Caso | 1- 1| | Caso | St0d Sc0d Smzd Smyd fsPfd fsIfl fsIto|Ttozd Tzd Ttoyd Tyd fsTau|VE| | 1- 1| 0.0| 13.3| 0.0| 0.0| .018| .382| .382|0.00| 0.0|0.00| 0.0|0.000|si| Rettangolare (sezione n. 2; b=20; h=20) ------ ASTA (896-897) 17 Khz= 1.1; Khy= 1.1; Kht= 1.1 (legno lamellare) Instabilita' flessionale |As| L0 | Lam |LamRel | Z| 200.00| 34.64| .557 | Y| 200.00| 34.64| .557 Instabilita' torsionale | L0 | Scrit | LamRel | K crit | | 200.00 | 5816.4 | .203 | 1.000 | | 200.00 | 5816.4 | .203 | 1.000 | .668 .668 .965 ---- PROGR.(1) SOLLECITAZIONI MT | 0.0 Caso | 1- 1| | Caso | StOd ScOd Smzd Smyd fsPfd fsIfl fsIto | Ttozd Tzd Ttoyd Tyd fsTau | VE | 1-1 | 0.0 | 0. ---- PROGR.(9) 200.00 SOLLECITAZIONI | Caso | | 1- 1| ΜZ TENSIONI Caso |St0d Sc0d Smzd Smyd fsPfd fsIfl fsIto|Ttozd Tzd Ttoyd Tyd fsTau|VE| 1- 1| 0.0| 0.0| 0.0| 0.0|0.000|0.000|0.000|0.00| 0.0|0.00| 0.0|0.000|si| Rettangolare (sezione n. 2; b=20; h=20) ------- ASTA (891-897) 18 Khz= 1.1 ; Khy= 1.1 ; Kht= 1.1 (legno lamellare) Instabilita' flessionale |As| L0 | Lam | LamRel| k | | Z| 512.02| 88.69| 1.426| 1.574| | Y| 512.02| 88.69| 1.426| 1.574| Instabilita' torsionale | L0 |Scrit |LamRel|K crit| | 512.02|2271.9| .325| 1.000| .447 .325 | 1.000 | 512.02 | 2271.9 | ---- PROGR (1) 0.00 SOLLECITAZIONI | Caso | MY MT Ν - 1 ΤZ ΤY - 1

0.01 0.0 | 1-1| 0.0| -11922.7| 0.01 0.01 TENSIONI Caso |St0d Sc0d Smzd Smyd fsPfd fsIfl fsIto|Ttozd Tzd Ttoyd Tyd fsTau|VE| 1- 1| 0.0| 29.8| 0.0| 0.0| .090| .672| .672|0.00| 0.0|0.00| 0.0|0.000|si| ---- PROGR.(7) SOLLECITAZIONI ΜZ TY_{0.0}| Caso | 1- 1| TZ | 0.0 0.0 Caso |St0d Sc0d Smzd Smyd fsPfd fsIfl fsIto|Ttozd Tzd Ttoyd Tyd fsTau|VE| 1- 1| 0.0| 29.8| 0.0| 0.0| .090| .672| .672|0.00| 0.0|0.00| 0.0|0.000|si| ---- PROGR.(9) SOLLECITAZIONI TZ_{0.0} | Caso | | 1- 1| o.ol TENSIONI | Caso | st0d | sc0d | Smzd | Smyd | fsPfd | fsIf1 | fsIt0 | Ttozd | Tzd | Ttoyd | Tyd | fsTau | VE | | 1- 1 | 0.0 | 29.8 | 0.0 | 0.0 | 0.90 | 0.672 | 0.672 | 0.00 | 0. Rettangolare (sezione n. 2; b=20; h=20) ------ ASTA (897-898) 19 Khz= 1.1 ; Khy= 1.1 ; Kht= 1.1 (legno lamellare) Instabilita' torsionale | L0 | Scrit | LamRel | K crit | | 495.39 | 2348.2 | .320 | 1.000 | | 495.39 | 2348.2 | .320 | 1.000 | Instabilita' flessionale LO | Lam | LamRel | k | 495.39 | 85.80 | 1.380 | 1.506 | 495.39 | 85.80 | 1.380 | 1.506 | | kc | .474| | .474| ---- PROGR.(1) 0.00 SOLLECITAZIONI MT | N | 0.0| -11996.6| | Caso | | 1- 1| ΜZ 0.0 TENSIONI | Caso | St0d | Sc0d | Smzd | Smyd | fsPfd | fsIf1 | fsIt0| Ttozd | Tzd | Ttoyd | Tyd | fsTau | VE | | 1- 1 | 0.0 | 30.0 | 0.0 | 0.0 | 0.91 | .637 | .637 | 0.00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | | ---- PROGR.(9) SOLLECITAZIONI MT | N | 0.0 | -11996.6 | TY_{0.0}| | Caso | | 1- 1| ΜZ 0.0 TENSIONI | Caso | St0d Sc0d Smzd Smyd fsPfd fsIfl fsIto|Ttozd Tzd Ttoyd Tyd fsTau|VE| | 1- 1| 0.0| 30.0| 0.0| 0.0| .091| .637| .637|0.00| 0.0|0.00| 0.0|0.000|si| Rettangolare (sezione n. 2; b=20; h=20) ------- ASTA (891-896) 22 Khz= 1.1 ; Khy= 1.1 ; Kht= 1.1 (legno lamellare) Instabilita' torsionale | L0 |Scrit |LamRel|K crit| | 471.35|2468.0| .312| 1.000| | 471.35|2468.0| .312| 1.000| Instabilita' flessionale | As| L0 | Lam | LamRel | k | kc | | Z | 471.35 | 81.64 | 1.313 | 1.413 | .517 | Y | 471.35 | 81.64 | 1.313 | 1.413 | .517 | ---- PROGR.(1) 0.00 SOLLECITAZIONI MY | 0.0 N 10975.5 MT | 0.0 0.0 TENSIONI | Caso |St0d Sc0d Smzd Smyd fsPfd fsIfl fsIto|Ttozd Tzd Ttoyd Tyd fsTau|VE| | 1- 1| 27.4| 0.0| 0.0| 0.0| .365|0.000|0.000|0.00| 0.0|0.00| 0.0|0.000|si| ---- PROGR.(9) 471.35 SOLLECITAZIONI Caso | 1- 1| | Caso | St0d Sc0d Smzd Smyd fsPfd fsIfl fsIto|Ttozd Tzd Ttoyd Tyd fsTau|VE| | 1- 1| 27.4| 0.0| 0.0| .2| .367|0.000|0.000|0.00| 0.0|0.00| 0.0|0.000|si| Rettangolare (sezione n. 2; b=20; h=20) ------ ASTA (896-898) 23 Khz= 1.1 ; Khy= 1.1 ; Kht= 1.1 (legno lamellare) Instabilita' torsionale | L0 |Scrit |LamRel|K crit| | 453.22|2566.7| .306| 1.000| | 453.22|2566.7| .306| 1.000| Instabilita' flessionale LO | Lam |LamRel | k | 453.22 | 78.50 | 1.263 | 1.345 | 453.22 | 78.50 | 1.263 | 1.345 | ---- PROGR.(1) 0.00

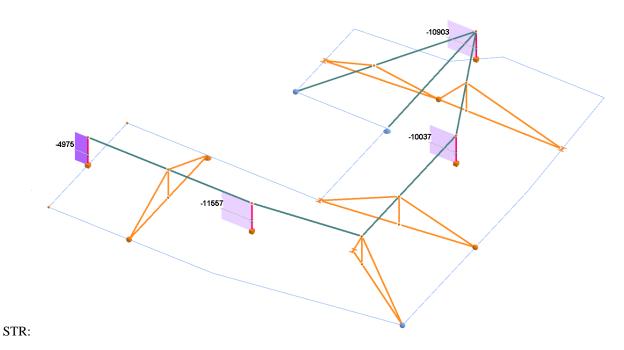
ESE

SOLLECITAZIONI Caso 1- 1	: MZ 0.0	MY 235.0	MT 0.0	N 10975.5	TZ .5	TY 0.0
TENSIONI Caso StOd Sc 1-1 27.4	: Od Smzd S 0.0 0.0	myd fsPfd f .2 .367 0	fsifl fsit 0.000 0.00	co Ttozd Tzd 00 0.00 0.0	Ttoyd Tyd f 0.00 0.0 0	sTau VE .000 si
SOLLECITAZIONI Caso 1- 1	: MZ 0.0	MY 0.0	MT 0.0	N	PROGR.(9) TZ .5	453.22 TY 0.0
TENSIONI Caso StOd Sc 1- 1 27.4	: Od Smzd S 0.0 0.0	myd fsPfd f 0.0 .365 0	fsifl fsit 0.000 0.00	co Ttozd Tzd 00 0.00 0.0	Ttoyd Tyd f 0.00 0.0 0	sTau VE .000 si
Rettangolare (se Khz= 1.1 ; Khy=	zione n. 2; 1.1 ; Kht=	b=20; h=20) 1.1 (legno	lamellare	·	ASTA (89	3-894) 24
Instabilita' fle As L0 Lam Z 120.00 20. Y 120.00 20.	LamRel 78 .334	k kc .558 .996 .558 .996	5	L0 Sc 120.00 96	l' torsional rit LamRel 94.0 .157 94.0 .157	K crit 1.000
SOLLECITAZIONI Caso 1- 1	: MZ 0.0	MY 0.0	MT 0.0	N 4990.3	PROGR.(1) TZ -1.5	0.00 TY 0.0
TENSIONI Caso StOd Sc 1- 1 12.5	: Od Smzd S 0.0 0.0	myd fsPfd 1 0.0 .166 0	fsifl fsit 0.000 0.00	co Ttozd Tzd 00 0.00 0.0	Ttoyd Tyd f 0.00 0.0	sTau VE .001 si
SOLLECITAZIONI Caso 1- 1	: MZ 0.0	MY 180.1	MT 0.0	N 4990.3	PROGR.(9) TZ -1.5	120.00 TY 0.0
TENSIONI Caso St0d Sc 1- 1 12.5	: Od Smzd S 0.0 0.0	myd fsPfd f .1 .167 0	sifl fsit 0.000 0.00	co Ttozd Tzd 00 0.00 0.0	Ttoyd Tyd f	sTau VE .001 si
Rettangolare (se Khz= 1.1 ; Khy=	zione n. 2; 1.1 ; Kht=	b=20; h=20) 1.1 (legno	lamellare	· !)	ASTA (89	4-892) 25
Rettangolare (se Khz= 1.1; Khy= Instabilita' fle As LO Lam Z 549.41 95. Y 549.41 95.	1.1 ; Kht= ssionale LamRel 16 1.531	1.1 (legno k kc 1.733 .393	lamellare 	e) Instabilita LO Sc 549.41 21	ASTA (89 l' torsional rit LamRel 17.3 .337 17.3 .337	e K crit 1.000
Khz= 1.1 ; Khy= Instabilita' fle As L0 Lam z 549.41 95.	1.1 ; Kht= ssionale LamRel 16 1.531	1.1 (legno k kc 1.733 .393	lamellare 	Instabilita L0 Sc 549.41 21 549.41 21	u' torsional rit LamRel .17.3 .337	e K crit 1.000 1.000
Khz= 1.1 ; Khy= Instabilita' fle As L0 Lam z 549.41 95. Y 549.41 95. SOLLECITAZIONI Caso	1.1 ; Kht= ssionale LamRel 16 1.531 16 1.531 : MZ	1.1 (legno k	lamellare	Instabilita LO Sc 549.41 21 549.41 21 N 4990.3	t' torsional rrit LamRel 17.3 .337 17.3 .337 PROGR.(1) TZ .3	e K crit 1.000 1.000 0.00 TY 0.0
Khz= 1.1 ; Khy= Instabilita' fle As L0 Lam z 549.41 95. Y 549.41 95. SOLLECITAZIONI Caso 1- 1 TENSIONI Caso St0d Sc	1.1 ; Kht= ssionale LamRel 16 1.531 16 1.531 : MZ	1.1 (legno k	lamellare	Instabilita L0 Sc 549.41 21 549.41 21 N 4990.3	t' torsional rrit LamRel 17.3 .337 17.3 .337 PROGR.(1) TZ .3	e K Crit 1.000 1.000 0.00 TY 0.0 STau VE .000 si
Khz= 1.1; Khy=	1.1 ; Kht= ssionale LamRel 16 1.531 16 1.531 : MZ 0.0 : Od Smzd S 0.0 0.0 : MZ 0.0 : Od Smzd S 0.0 0.0	1.1 (legno k	MT	Instabilita L0 Sc 549.41 21 549.41 21 N	Ttoyd Tyd f 0.00 0.0 0	e K crit 1.000 1.000 0.00 TY 0.0 549.41 TY 0.0
Khz= 1.1; Khy=	1.1; Kht= ssionale LamRel 16 1.531 16 1.531	1.1 (legno k	MT	Instabilita L0 Sc 549.41 21 549.41 21 549.43 4990.3 Co Ttozd Tzd 00 0.00 0.0	Ttoyd Tyd f 0.00 0.0 0	e K crit 1.000 1.000 0.00 TY 0.0 549.41 TY 0.0
Khz= 1.1; Khy=	1.1; Kht= ssionale LamRel 16 1.531 16 1.531 : MZ 0.0 : Od Smzd S 0.0 0.0 : MZ 0.0 : Stand S 0.0 0.0 zione n. 2; 1.1; Kht= ssionale LamRel 64 .557	1.1 (legno k	MT	Instabilita L0 Sc 549.41 21 549.41 21 549.41 21	Ttoyd Tyd f 0.00 0.0 0	e K crit 1.000 1.000 0.00 TY 0.0 549.41 TY 0.0 5-906) 32 E K crit 1.000
Khz= 1.1 ; Khy=	1.1; Kht= ssionale LamRel 16 1.531 16 1.531 : MZ 0.0 : Od Smzd S 0.0 0.0 : MZ 0.0 : Stand S 0.0 0.0 zione n. 2; 1.1; Kht= ssionale LamRel 64 .557	1.1 (legno k	MT	Instabilita L0 Sc 549.41 21 549.41 21 549.41 21	Ttoyd Tyd fo.00 0.0 0 TZ .3 Ttoyd Tyd fo.00 0.0 0 PROGR.(9) TZ .3 Ttoyd Tyd fo.00 0.0 0 PROGR.(9) TZ .3 Ttoyd Tyd fo.00 0.0 0 PROGR.(9)	e K crit 1.000 1.000 0.00 TY 0.0 0.00 549.41 TY 0.0 5-906) 32 e K crit 1.000 1.000

					PROGR.(9)	200.00
SOLLECITAZIONI Caso 1- 1	: MZ 0.0	MY 0.0	MT 0.0	N -55.2	TZ 0.0	TY _{0.0}
TENSIONI Caso StOd So 1-1 0.0						
Rettangolare (se Khz= 1.1 ; Khy=	ezione n. 2; = 1.1 ; Kht=	b=20; h=20 1.1 (legno) lamellare	·	ASTA (907	7-905) 33
Instabilita' fle As LO Lan Z 175.46 30. Y 175.46 30.						
SOLLECITAZIONI Caso 1- 1	: MZ 0.0	MY 50.4	MT 0.0		PROGR.(1) TZ .1	
TENSIONI Caso StOd So 1-1 14.3	: :0d Smzd S 0.0 0.0	myd fsPfd 0.0 .190	fsIfl fsIt 0.000 0.00	0.0 00.00	Ttoyd Tyd fs 0.00 .2 . PROGR.(9)	.016 si
SOLLECITAZIONI Caso 1- 1	: MZ 7514.5	MY 39.1	MT 0.0			
TENSIONI Caso StOd So 1-1 14.3	: :0d Smzd S 0.0 5.6	myd fsPfd 0.0 .242	fsIfl fsIt 0.000 .00	o Ttozd Tzd 3 0.00 0.0	Ttoyd Tyd fs 0.00 .2 .	STau VE .016 si
Rettangolare (se Khz= 1.1 ; Khy=	ezione n. 2; = 1.1 ; Kht=	b=20; h=20 1.1 (legno) lamellare	:)	ASTA (905	5-908) 34
Instabilita' fle As LO Lan Z 607.92 105. Y 607.92 105.	1 LamRel 29 1.694 29 1.694			L0 Sc 607.92 19 607.92 19		K crit 1.000 1.000
SOLLECITAZIONI Caso 1- 1	: M7	MX/	MT		PROGR.(1)	0.00
	7514.5	39.1	0.0	5706.7	.1	-12.4
TENSIONI Caso StOd So 1- 1 14.3	: :0d Smzd S :0.0 5.6	myd fsPfd 0.0 .242	fsIfl fsIt 0.000 .00	3 0.00 0.0	Ttoyd Tyd fs 0.00 .1 .	.004 si
SOLLECITAZIONI Caso 1- 1	: MZ 0.0	MY 0.0	MT 0.0	NI I		TY -12.4
TENSIONI Caso StOd So 1-1 14.3	: :0d Smzd S :0.0 0.0	myd fsPfd 0.0 .190	fsIfl fsIt 0.000 0.00	o Ttozd Tzd 0 0.00 0.0	Ttoyd Tyd fs 0.00 .1 .	STau VE .004 si
Rettangolare (se Khz= 1.1 ; Khy=	ezione n. 2; = 1.1 ; Kht=	b=20; h=20 1.1 (legno) lamellare	·	ASTA (907	7-906) 35
Instabilita' fle As L0 Lan Z 266.06 46. Y 266.06 46.	ı LamRel	k kc .797 .91 .797 .91	 	L0 S0 266.06 43 266.06 43	a' torsionale crit LamRel 372.3 .234 372.3 .234	K crit 1.000 1.000
SOLLECITAZIONI Caso 1- 1	: MZ 0.0	MY 0.0	MT 0.0	N -8655.0	PROGR.(1) TZ 0.0	0.00 TY 0.0
TENSIONI Caso StOd So 1-1 0.0 2	: :0d Smzd S :1.6 0.0	myd fsPfd 0.0 .047	fsIfl fsIt .237 .23	o Ttozd Tzd 7 0.00 0.0	Ttoyd Tyd fs 0.00 0.0 0.	STau VE .000 si
SOLLECITAZIONI	: MZ	MY	MT	 N l	PROGR.(8)	232.80
Caso 1- 1	MZ 0.0	0.0	0.0	-8655.0	TZ 0.0	TY 0.0
TENSIONI	:					

| Caso | StOd | ScOd | Smzd | Smyd | fsPfd | fsIf1 | fsIt0 | Ttozd | Tzd | Ttoyd | Tyd | fsTau | VE | 1-1 | 0.0 | 21.6 | 0.0 | 0.0 | 0.047 | .237 | .237 | 0.00 | 0.0 | 0.0 | 0.0 | 0.000 | si | SOLLECITAZIONI | Caso | | 1- 1| ΜZ TY 0.0 o.ol TENSIONI Caso |St0d Sc0d Smzd Smyd fsPfd fsIfl fsIto|Ttozd Tzd Ttoyd Tyd fsTau|VE| 1- 1| 0.0| 21.6| 0.0| 0.0| .047| .237| .237|0.00| 0.0|0.00| 0.0|0.000|si| Rettangolare (sezione n. 2; b=20; h=20) ------- ASTA (906-908) 36 Khz= 1.1 ; Khy= 1.1 ; Kht= 1.1 (legno lamellare) Instabilita' torsionale | L0 |Scrit |LamRel|K crit| | 639.97|1817.7| .363| 1.000| | 639.97|1817.7| .363| 1.000| Instabilita' flessionale | As| L0 | Lam | LamRel | k | | Z | 639.97 | 110.85 | 1.783 | 2.163 | Y | 639.97 | 110.85 | 1.783 | 2.163 | ---- PROGR.(1) SOLLECITAZIONI MY 0.0 ΜZ MT | 0.0 TY_{0.0}| | Caso | | 1- 1| -6007.7 0.0 | Caso | St0d | Sc0d | Smzd | Smyd | fsPfd | fsIfl | fsIto | Ttozd | Tzd | Ttoyd | Tyd | fsTau | VE | | 1- 1 | 0.0 | 15.0 | 0.0 | 0.0 | 0.23 | .513 | .513 | 0.00 | 0.0 | 0.00 | 0.0 | 0.000 | si | ---- PROGR.(9) SOLLECITAZIONI TZ 0.0 | Caso | N | -6007.7 0.0 TENSIONI Rettangolare (sezione n. 2; b=20; h=20) ------ ASTA (909-907) 37 Khz= 1.1 ; Khy= 1.1 ; Kht= 1.1 (legno lamellare) Instabilita' flessionale |As| L0 | Lam |LamRel| k | kc | | Z| 401.82| 69.60| 1.119| 1.168| .667| | Y| 401.82| 69.60| 1.119| 1.168| .667| Instabilita' torsionale | L0 |Scrit |LamRel|K crit| | 401.82|2895.0| .288| 1.000| | 401.82|2895.0| .288| 1.000| ---- PROGR.(1) 0.00 SOLLECITAZIONI MY | 0.0 | Caso | | 1- 1| 0.0 -10311.4 | Caso | St0d | Sc0d | Smzd | Smyd | fsPfd | fsIf1 | fsIt0 | Ttozd | Tzd | Ttoyd | Tyd | fsTau | VE | | 1- 1 | 0.0 | 25.8 | 0.0 | 0.0 | 0.07 | .389 | .389 | 0.00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | ---- PROGR.(8) SOLLECITAZIONI $\begin{array}{c|cccc} MT & & N & | \\ 0.0 & -10311.4 | \end{array}$ MY | 0.0 | Caso | | 1- 1| TY 0.0 0.0 TENSIONI | Caso | St0d | Sc0d | Smzd | Smyd | fsPfd | fsIf1 | fsIt0 | Ttozd | Tzd | Ttoyd | Tyd | fsTau | VE | | 1-1 | 0.0 | 25.8 | 0.0 | 0.0 | 0.67 | 0.389 | 0.389 | 0.00 | 0.0 | 0.0 | 0.0 | 0.000 | si | ---- PROGR.(9) SOLLECITAZIONI MT | N | 0.0| -10311.4| | Caso | | 1- 1| | Caso | St0d | Sc0d | Smzd | Smyd | fsPfd | fsIf1 | fsIt0 | Ttozd | Tzd | Ttoyd | Tyd | fsTau | VE | | 1-1 | 0.0 | 25.8 | 0.0 | 0.0 | 0.67 | .389 | .389 | 0.00 | 0.0 | 0.0 | 0.0 | 0.000 | si | Rettangolare (sezione n. 2; b=20; h=20) ------ ASTA (910-909) 38 Khz= 1.1 ; Khy= 1.1 ; Kht= 1.1 (legno lamellare) Instabilita' flessionale Instabilita' torsionale _am | LamRel | 54.35 | 97 L0 | Scrit | LamRel | K crit | 313.77 | 3707.4 | .254 | 1.000 | 313.77 | 3707.4 | .254 | 1.000 | | Lam ---- PROGR.(1) 0.00 SOLLECITAZIONI

0.0


MY 0.0

| Caso | | 1- 1|

```
TENSIONI
  Caso |St0d Sc0d Smzd Smyd fsPfd fsIfl fsIto|Ttozd Tzd Ttoyd Tyd fsTau|VE|
1- 1| 0.0| 26.2| 0.0| 0.0| .070| .308| .308|0.00| 0.0|0.00| 0.0|0.000|si|
                                                                                 ---- PROGR.( 8)
SOLLECITAZIONI
                          | Caso |
| 1- 1|
  ENSIONI :
Caso |St0d Sc0d Smzd Smyd fsPfd fsIfl fsIto|Ttozd Tzd Ttoyd Tyd fsTau|VE|
1- 1| 0.0| 26.2| 0.0| 0.0| .070| .308| .308|0.00| 0.0|0.00| 0.0|0.000|si|
                                                                                 ---- PROGR.( 9)
                                                                                                              313.77
SOLLECITAZIONI
                          :
MZ |
0.0|
  Caso |
1- 1|
TENSIONI
  Rettangolare (sezione n. 2; b=20; h=20) ------ ASTA (910-907) 47 Khz= 1.1 ; Khy= 1.1 ; Kht= 1.1 (legno lamellare)
                                                                         Instabilita' torsionale
| L0 |Scrit |LamRel|K crit|
| 693.81|1676.7| .378| 1.000|
| 693.81|1676.7| .378| 1.000|
Instabilita' flessionale
|As| L0 | Lam |LamRel| k | kc |
| Z| 693.81|120.17| 1.933| 2.450| .253|
| Y| 693.81|120.17| 1.933| 2.450| .253|
                                                                                 ---- PROGR.( 1)
                          MZ
SOLLECITAZIONI
                                           MY
0.0
                                                            MT |
0.0
  Caso |
1- 1|
                                                                         N |
10065.5|
                             0.0
TENSIONI
  Caso |St0d Sc0d Smzd Smyd fsPfd fsIfl fsIto|Ttozd Tzd Ttoyd Tyd fsTau|VE
| 1- 1| 25.2| 0.0| 0.0| 0.0| .335|0.000|0.000|0.00| 0.0|0.00| 0.0|0.000|si|
                                                                                 ---- PROGR.( 9)
                                                                                                              693.81
SOLLECITAZIONI
                           ΜZ
  Caso
                              0.0
                                                                          10065.5
TENSIONI
| Caso | St0d Sc0d Smzd Smyd fsPfd fsIfl fsIto|Ttozd Tzd Ttoyd Tyd fsTau|VE| | 1- 1| 25.2| 0.0| 0.0| 0.0| 335|0.000|0.000|0.00| 0.0|0.00| 0.0|0.000|si|
```

Per quanto riguarda la struttura del PASSAFUORI che verrà mantenuta si dichiara che le sezioni degli elementi che la costituiscono risultano idonei

Per quanto riguarda i pilastri del sottotetto si riportano le sollecitazioni in condizioni SLU

La sezione dei pilastri è pari a 50x50cm. Le caratteristiche del materiale sono già state anticipate nella relazione sui materiali ed è prevista una tensione massima di compressione pari a 0.64 N/mm^2 .

Rimandando al cap. 4.5.6.2 delle NTC 2018 per le specifiche, considerato un'altezza massima di circa 2.60m, la sezione di 500x500mm, un'eccentricità pari all'eccentricità di esecuzione in quanot le travi sono centrate sui pilastri, un coefficiente di eccentricità m= 0.36 ed una snellezza = 5.2 si ottiene un coefficiente Φ = 0.78 ovverosia N rd = $500^2 * 0.78 * 0.64 = 124800$ N = 12480 daN > 11557 daN VERIFICATO

VERIFICA DELLE VOLTE ESISTENTI:

Ripartendo dall'analisi dei carichi di cui ai punti precedenti, si riporta la condizione post-intervento:

CARICHI PERMANENTI: Volte in muratura

(G1) Peso proprio volta in muratura: mattone s=5cm 0.90 kN/m²

Calotta in c.a. con cls alleggerito: 1.10 kN/m^2


(G1) Totale peso proprio volta rinforzata 2.00 kN/m²

(G2) Pesi permanentemente portati:

Tramezzature realizzata con elementi divisori

aventi un peso compreso tra 1.00 kN/m = 2.00 kN/m 0.80 kN/m^2

(G2) Permanente su calotta in c.a.:

riempimento alleggerito sp $_{medio}$ = 25cm 1.90 kN/m 2 Sottofondo e pavimento = 1.10 kN/m 2

(G2) Totale permanente su volta

 3.80 kN/m^2

Carico in condizione di SLU (fattorizzato come previsto al cap. 2 NTC 2018):

$$Q \text{ sd,post} = 1.3 * 2.00 + 1.5 * 3.80 = 8.30 \text{ kN/mq}$$

Lo stato dei luoghi prevede che sulla volta in muratura sia presente un riempimento in materiali incoerenti (come d'uso per l'epoca) tendenzialmente di recupero e riconducibile in termine di peso specifico a circa 18 kN/mc. Per quanto riguarda invece lo strato (G2) è il medesimo per cui in condizione "ante" il carico è il seguente:

CARICHI PERMANENTI: Volte in muratura

(G1) Peso proprio volta in muratura: mattone s= 5cm 0.90 kN

(G2) Pesi permanentemente portati:

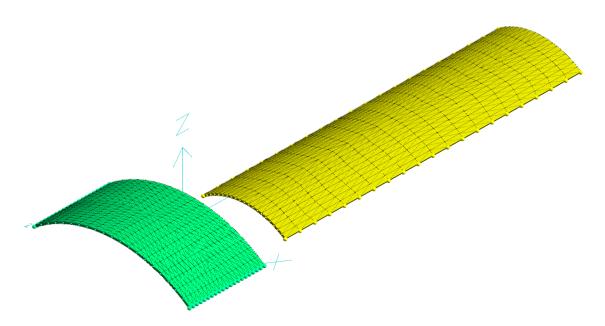
Tramezzature realizzata con elementi divisori

aventi un peso compreso tra 1.00 kN/m = 2.00 kN/m 0.80 kN/m^2

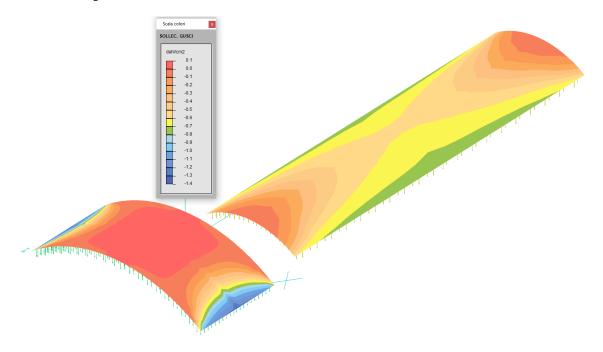
(G2) Permanente su calotta in c.a.:

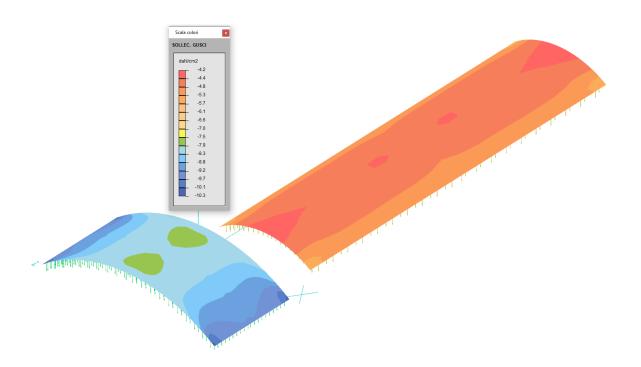
riempimento sulla volta sp_{medio} = 30 cm (si consideri che manca il cls) 5.40 kN/m^2

Sottofondo e pavimento = 1.10 kN/m^2


(G2) Totale permanente su volta 7.30 kN/m²

Carico in condizione di SLU (fattorizzato come previsto al cap. 2 NTC 2018):


Q sd,ante =
$$1.3 * 0.90 + 1.5 * 7.30 = 12.12 \text{ kN/mq}$$


Da cui si evince come **Q sd,ante** > **Q sd,post** per cui la condizione è migliorativa

Sono state quindi modellati i gusci in calcestruzzo sulla forma delle volte in muratura ed applicati i carichi indicati in precedenza:

Ottenendo le seguenti tensioni massime sul calcestruzzo in condizione SLU STR:

Da cui si evince come la tensione massima nei gusci di calcestruzzo pari a 1.03 N/mm² sia $<< f_{cd} = 14.2 \text{ N/mm}^2$.

Verificato

Verifica solaio piano terreno

Di seguito si riporta la verifica del solaio più sollecitato al piano terreno. In particolare il solaio in latero-cemento S.2 (rif. Elaborato S.01).

Spessore solaio 23cm (18 + 5cm)

Analisi dei carichi:

(G1) Peso solaio in latero-cemento s=23cm 2.90 kN/m²

(G2) Carico permanente portato 2.50 kN/m²

(Q) Variabile solai di piano terreno (categoria C3 - DM 17/01/2018) 5.00 kN/m²

Carico totale SLU : $1.3*2.9+1.5*2.5+5*1.5 = 14.72 \text{ kN/m}^2$

Carico sul travetto SLU: 14.72 * 0.5 = 7.36 kN/m

 $L_{max} = 2.90m$

 $M_{sd} = 1/8 * 2.9^2 * 7.36 = 7.74 \text{ kNm}$

V sd = 2.9 * 7.36 / 2 = 10.67 kN

La sezione resistente, a forma di T, con le seguenti caratteristiche:

H totale = 230 mm

Copri ferro inferiore = 20mm

D = altezza utile = 210mm

b = Larghezza travetto = 100mm

 $As = 2 diam 14mm = 308 mm^2$

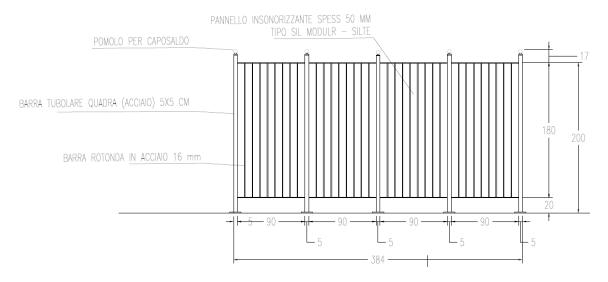
Armatura tipo B45C; $f_{yk} = 450 \text{ N/mm}^2$

 $f_{yd} = 450/1.15 = 391 \text{ N/mm}^2$

M rd = 0.9 * 391 * 210 *308 = 22'760'892 Nmm = 22.7 kNm

M rd > M sd VERIFICATO

 $V rd = [0.18 * 1.92 * (100*0.015*20)^{1/3}]*100*210 = 22.53 kN > V sd <u>VERIFICATO</u>$


k = 1.93

v min = 4.2

 $\rho = 308/(100*210) = 0.015$

Verifica della recinzione di chiusura gruppo esterno

Si prevede una recinzione realizzata con montanti 50x50mm spessore 5mm passo 95mm. Il prospetto esposto al vento è il seguente:

Valutazione dell'azione del vento:

	Vb, 0)	a 0	Ks
Zona 1	2:	5	1000	0.4
q r	390.0	6 N/n	1 q	
z parete		2 m	•	z min
c e	1.48	8		
	sopravento	sott	ovento	
c p	0.75	5	-0.40	
c d		1		
c t	:	1		
Rugosità	del terreno:	\mathbf{A}		
Zona		\mathbf{V}		

Zona V

Kr 0.23

z0 0.7 m

z min 12 m

Dimensioni di massima del blocco dell'edificio

b =	2.73 m
d =	3.85 m
h =	2 m
h / d =	0.52

Q depressione = -233.41 N/mq Q depressione = 434.54 N/mq Per l'ancoraggio al piede si prevede una piastra 200x200mm spessore 6mm con 4 fori rientrato 30mm rispetto al bordo per collegamento al calcestruzzo con tasselli M10 tipo HILTI HSB con le seguenti resistenze di progetto:

Resistenza caratteristica

Dimensione Ancorante		M8	M10	M12	M16
Trazione N _{Rk} [k	:N]	8,3	12,0	14,6	26,5
Taglio V _{Rk} [k	N]	8,3	12,8	17,9	42,4

Resistenza di progetto

Dimensione Ancorante		M8	M10	M12	M16
Trazione NRd	[kN]	4,6	8,0	9,7	14,7
Taglio V _{Rd}	[kN]	5,5	8,5	11,9	33,9

Da cui si evince N rd = 8000 N

Di seguito si riportano le verifiche del montate, del tassello e della piastra al piede:

B montante	50 mm
spessore	5 mm
I	307500 mm4
W	12300 mm3
f yk acciaio	235 N/mm2
f yd	223.8 N/mm3
M rd	2752857 Nmm
	2752.86 Nm
interasse montanti	0.95 m
altezza montanti	2 m
Q SLU montante	951.8 N/m
M sd	1903.64 Nm
$M sd \le M rd$	VERIFICATO
Piastra al piede quadra	200 mm
spessore piastra	6 mm
arretramento foro	30 mm
n.4 tasselli tipo	M12
N sd tassello	6221 N
N rd tassello	8000 N
$N sd \le N rd$	VERIFICATO
W pl, piastra	1800 mm3
M rd piastra	402857 Nmm
M sd piastra	559894 Nmm
$M \text{ sd} \leq M \text{ rd}$	VERIFICATO

Conclusioni

Dai calcoli precedenti, considerati i sovraccarichi suddetti e le caratteristiche dei materiali da costruzione, si deduce che gli interventi locali di rinforzo delle strutture esistenti ed il nuovo tetto il legno risultano verificati a fronte delle azioni statiche previste dalla normativa 17 Gennaio 2018.

Il Tecnico Incaricato

2. RELAZIONE SUI MATERIALI

(ai sensi cap. 10.1 delle NTC 2018)

Si riportano di seguito le caratteristiche dei materiali da costruzione utilizzati:

Materiali per nuova costruzione:

Calcestruzzo solai LC 25/28

Resistenza caratteristica: Rck 28 N/mm²:

 $f_{ck} = 25 \text{ N/mm}^2$

 γ_{cls} = fattore sicurezza = 1.5

α_{cc}=0.85 (coefficiente riduttivo per carichi di lungo termine)

 $f_{cd} = 14.16 \text{ N/mm}^2$

Calcestruzzo fondazioni:

Classe di esposizione XC2

Resistenza caratteristica: Rck 30 N/mm²:

 $f_{ck} = 24.9 \text{ N/mm}^2$

 γ_{cls} = fattore sicurezza = 1.5

α_{cc}=0.85 (coefficiente riduttivo per carichi di lungo termine)

 $f_{cd} = 14.1 \text{ N/mm}^2$

Acciaio da cemento armato:

Tipo B 450 C

$$f_{yk} = 450 \text{ N/mm}^2$$

 γ_{acc} = fattore sicurezza = 1.15

 $f_{yd} = 391 \text{ N/mm}^2$

Legno lamellare:

Tipo GL 24

 $f_{m,k} = 24 \text{ N/mmq}$ (res. a flessione)

 $f_{t,0,k} = 16.5$ (res. a trazione)

 $f_{c,0,k} = 24$ (res. a compressione)

 $f_{v,k} = 2.7$ (res. a taglio)

 $\gamma_{\text{lamellare}} = \text{fattore sicurezza} = 1.45$

Materiali esistenti:

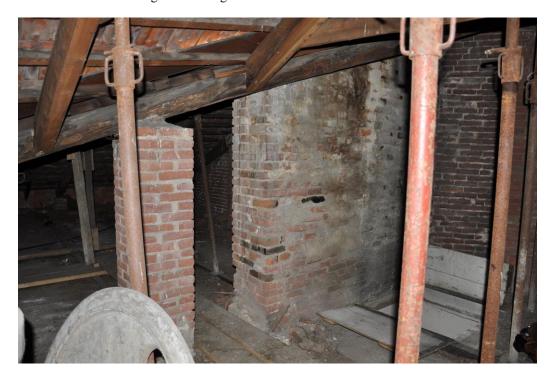
Acciaio da carpenteria dei profili esistenti:

In base alla Circolare n. 7 C.S.LL.PP. "Istruzioni per l'applicazione dell'aggiornamento delle "Norme tecniche per le costruzioni" di cui al D.M. 17 Gennaio 2018" (Tab. C8.5.IV), si ritiene raggiunto il livello di conoscenza per la resistenza meccanica dei profili in acciaio esistente che reggono le volte dei solai corrisponde a:

LIVELLO DI CONOSCENZA LC1 (riferimento a norme dell'epoca, limitate verifiche in sito). In tale condizione il fattore di confidenza risulta: **F.C.=1.35**

La resistenza media a rottura per gli acciai dell'epoca (primi del '900) è stata stimata in base alle indicazioni del Regio Decreto 10/10/1907 "Norme e condizioni per i materiali agglomerati idraulici e per le opere in cemento armato", nonché sulla base della pubblicazione: secondo cui essa è almeno pari a 360 N/mm².

Considerando il precedente valore come medio e considerando che la resistenza caratteristica pari a circa il 75% della resistenza media, essa risulta pari a circa 260 N/mm². A tale valore si applica il fattore di confidenza FC=1.35, ottenendo:

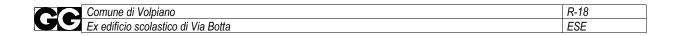

 $f_{yk,esist}$ =260/1.35= 192 N/mm²

Da cui, applicando il fattore di sicurezza $\gamma_s = 1.05$, si ottiene:

 $f_{yd,esist}$ =192/1.05= 182 N/mm²

Muratura di mattoni pieni per pilastri del sottotetto:

A supporto delle travi del tetto sono presenti pilastri e setti murari, nel sottotetto, realizzati con muratura di mattoni pieni e malta di calce come nella seguente immagine. La dimensione minima è 50x50xcm:



In base alla Circolare n. 7 C.S.LL.PP. "Istruzioni per l'applicazione dell'aggiornamento delle "Norme tecniche per le costruzioni" di cui al D.M. 17 Gennaio 2018" cap. C8.5.4, il livello di conoscenza per la resistenza meccanica della muratura di mattoni pieni e malta di calce corrisponde a:

LIVELLO DI CONOSCENZA LC1. In tale condizione il fattore di confidenza risulta: F.C.=1.35

La resistenza media a rottura e gli altri parametri vengono dedotti dalla seguente tabella utilizzando i valori minimi per le resistente e medi per i moduli di deformabilità.

Tipologia di muratura	f (N/mm²)	τ ₀ (N/mm²)	f _{V0} (N/mm ²)	E (N/mm²)	G (N/mm²)	w (kN/m³)
	min-max	min-max		min-max	min-max	
Muratura in pietrame disordinata (ciottoli, pietre erratiche e irregolari)	1,0-2,0	0,018-0,032	-	690-1050	230-350	19
Muratura a conci sbozzati, con paramenti di spessore disomogeneo (*)	2,0	0,035-0,051	-	1020-1440	340-480	20
Muratura in pietre a spacco con buona tessitura	2,6-3,8	0,056-0,074	-	1500-1980	500-660	21
Muratura irregolare di pietra tenera (tufo, calcarenite, ecc.,)	1,4-2,2	0,028-0,042	-	900-1260	300-420	13 ÷ 16(**)
Muratura a conci regolari di pietra tenera (tufo, calcarenite, ecc.,) (**)	2,0-3,2	0,04-0,08	0,10-0,19	1200-1620	400-500	10 110()
Muratura a blocchi lapidei squadrati	5,8-8,2	0,09-0,12	0,18-0,28	2400-3300	800-1100	22
Muratura in mattoni pieni e malta di calce (***)	2,6-4,3	0,05-0,13	0,13-0,27	1200-1800	400-600	18
Muratura in mattoni semipieni con maita cemenuzia (es,: doppio UNI foratura ≤40%)	5,0-8,0	0,08-0,17	0,20-0,36	3500-5600	875-1400	15

Da cui si evince, per l'utilità della presente relazione e considerando FC=1.35 oltre che $\,\gamma_{\,M}=3$:

 $f_{d,muratura}$ =2.6/(1.35*3)= 0.64 N/mm²